A synthetic study of positive solutions to elliptic and parabolic partial differential equations

椭圆型和抛物型偏微分方程正解的综合研究

基本信息

  • 批准号:
    13440042
  • 负责人:
  • 金额:
    $ 4.67万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

M.Murata and K.Ishige studied uniqueness of nonnegative solutions of the Cauchy problem to second order parabolic equations on Riemannian manifolds and domains of R^n, and gave a sharp and general sufficient condition for the uniqueness via asymptotic properties at infinity of the equation and manifolds (Ann.Scuola Normale Sup. Pisa,30(2001),171-223). This is a simple and general result which unifies all previous results on the uniqueness. By introducing tne notion of heat escape, M.Murata also gave a sharp and general sufficient condition for the non-uniqueness (Math.Ann.,327(2003),203-226).M.Murata investigated the structure of positive solutions of second order elliptic equations in skew product form, and determined the Martin boundary and Martin kernel by exploiting and developing perturbation theory, estimates of fundamental solutions for parabolic equations, and uniqueness theorems for nonnegative solutions of parabolic equations (J.Func.Anal.,194(2002),53-141;J.Math.Soc.Japan,57(2005),1-27).M.Murata and T.tsuchida gave the asymptotics at infinity of the Green function for an elliptic equation with periodic coefficients on R^n, and explicitly determined the Martin boundary for it (J.Diff.Eq.,195(2003),82-118). This solves an open problem by S.Agmon since 1984.
M.Murata和K.Ishige研究了黎曼流形和区域R^n上二阶抛物型方程Cauchy问题非负解的唯一性,并利用方程和流形在无穷远处的渐近性质给出了唯一性的一个尖锐而一般的充分条件(Ann.Scuola Normale Sup.比萨,30(2001),171 -223)。这是一个简单而一般的结果,它统一了以往关于唯一性的所有结果。通过引入热逃逸的概念,M.Murata也给出了非唯一性的一个尖锐而普遍的充分条件(Math.Ann.,327(2003),203 -226)。M.Murata研究了斜积形式的二阶椭圆方程的正解的结构,并通过利用和发展扰动理论、抛物方程的基本解的估计和抛物方程的非负解的唯一性定理来确定Martin边界和Martin核(J.Func.Anal.,194(2002),53 -141; J. Math. Soc. Japan,57(2005),1 -27).M.Murata和T.tsuchida给出了R^n上具有周期系数的椭圆方程的绿色函数在无穷远处的渐近性,并明确地确定了它的Martin边界(J.Diff.Eq.,195(2003),82 -118)。这解决了S.Agmon自1984年以来的一个公开问题。

项目成果

期刊论文数量(94)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotics of Green functions and Martin boundaries for elliptic operators with periodic coefficients
具有周期系数的椭圆算子的格林函数和 Martin 边界的渐近性
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minoru Murata;Tetsuo Tsuchida
  • 通讯作者:
    Tetsuo Tsuchida
Uniqueness theorems for parabolic equations and Martin boundaries for elliptic equations in skew products form
抛物线方程的唯一性定理和斜积形式椭圆方程的马丁边界
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Seiichi Iwamoto;M.Murata
  • 通讯作者:
    M.Murata
Martin boundaries of elliptic skew products, semismall perturbations, and fundamental solutions of parabolic equations.
椭圆偏斜积、半小扰动和抛物方程基本解的马丁边界。
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Murata
  • 通讯作者:
    M.Murata
A.Futaki, T.Mabuchi: "Moment maps and multilinear bilinear forms associated with symolectic classes"Asian.J.Math.. 6. 349-372 (2002)
A.Futaki、T.Mabuchi:“与符号类相关的矩图和多线性双线性形式”Asian.J.Math.. 6. 349-372 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Futaki, Y.Nakagawa: "Characters of the automorphism groups associator with Kahler classes and funotionals with cocycle conditions"Kodai Math. J.. 24. 1-14 (2001)
A.Futaki,Y.Nakakawa:“自同构群关联器与卡勒类和具有共循环条件的函子的特征”Kodai Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MURATA Minoru其他文献

MURATA Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MURATA Minoru', 18)}}的其他基金

Genome engineering and gene expression analysis in a model plant Arabidopsis thaliana
模式植物拟南芥的基因组工程和基因表达分析
  • 批准号:
    22310129
  • 财政年份:
    2010
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the structure of nonnegative solutions for parabolic equations and the perturbation theory of elliptic operators
抛物型方程非负解结构及椭圆算子摄动理论研究
  • 批准号:
    21540164
  • 财政年份:
    2009
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic analysis of heat kernels and Green functions and its applications
热核与格林函数的渐近分析及其应用
  • 批准号:
    17340034
  • 财政年份:
    2005
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular analysis of rye-drived midget chromosomes by microdissection
通过显微切割对黑麦驱动的侏儒染色体进行分子分析
  • 批准号:
    13660007
  • 财政年份:
    2001
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A versatile study of positive solutions to parabolic and elliptic partial differential equations
抛物型和椭圆型偏微分方程正解的通用研究
  • 批准号:
    11440039
  • 财政年份:
    1999
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Construction of chromosome -specific DNA libraries by laser-microdissection-Molecular analysis of homoeologous group 1 chromosomes in wheat.
通过激光显微切割小麦同源 1 组染色体的分子分析构建染色体特异性 DNA 文库。
  • 批准号:
    11660005
  • 财政年份:
    1999
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure of positive solutions to second order elliptic and parabolic partial differential equations
二阶椭圆和抛物型偏微分方程正解的结构
  • 批准号:
    09440049
  • 财政年份:
    1997
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MOLECULAR STUDIES ON NUCLEAR GENE (S) INTERACTING RYE CYTOPLASM ORDERING OF YAC CLONES TO IDENTIFY THE GENE (S)
核基因 (S) 与 YAC 克隆黑麦细胞质排序相互作用的分子研究以鉴定基因 (S)
  • 批准号:
    06660007
  • 财政年份:
    1994
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
MOLECULAR STUDIES ON NUCLEAR GENE(S) INTERACTING WITH RYE CYTOPLASM Construction of YAC library with telomere sequences
核基因与黑麦细胞质相互作用的分子研究 端粒序列 YAC 文库的构建
  • 批准号:
    04660006
  • 财政年份:
    1992
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Molecular Studies on Nuclear Gene(s) Interacting with Rye Cytoplasm
核基因与黑麦细胞质相互作用的分子研究
  • 批准号:
    02660007
  • 财政年份:
    1990
  • 资助金额:
    $ 4.67万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了