Study on the structure of nonnegative solutions for parabolic equations and the perturbation theory of elliptic operators

抛物型方程非负解结构及椭圆算子摄动理论研究

基本信息

  • 批准号:
    21540164
  • 负责人:
  • 金额:
    $ 2.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2009
  • 资助国家:
    日本
  • 起止时间:
    2009 至 2011
  • 项目状态:
    已结题

项目摘要

We investigated the structure of nonnegative solutions to parabolic equations in cylinders on Riemannian manifolds, and gave explicit integral representation formulas for any solutions under the general and optimal condition that the constant function 1 is a semismall perturbation of the associated elliptic operator ; whose geometric characterization was also given in the case of the heat equation on rotationally symmetric Riemannian manifolds. Furthermore, by using the characterization and giving a sharp sufficient condition for the uniqueness of nonnegative solutions to the Cauchy problem, we determined the structure of nonnegative solutions to the heat equation on rotationally symmetric Riemannian manifolds.
研究了黎曼流形上圆柱抛物型方程非负解的结构,给出了在常数函数1是相关椭圆算子的半小扰动的一般最优条件下任意解的显式积分表示公式;在旋转对称黎曼流形上的热方程的情况下也给出了其几何特征。此外,通过利用该表征并给出柯西问题非负解唯一性的尖锐充分条件,我们确定了旋转对称黎曼流形上热方程非负解的结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Riemann mappings of invariant components of Kleinian groups
Nonnegative solutions of the heat equation on rotationally symmetric Riemannian manifolds and semismall perturbations, Rev
旋转对称黎曼流形和半小扰动上热方程的非负解,Rev
  • DOI:
    10.4171/rmi/656
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B.Ding;S.Grove;藤井斉亮;T. Mabuchi;M. Murata
  • 通讯作者:
    M. Murata
Teichmuller spaces and holomorphic maps, Teichmuller theory
Teichmuller 空间和全纯映射,Teichmuller 理论
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Motoko Kotani;Masanori Hino and Takashi Kumagai;Kazuhiro Ishige;大塚孝治;澤野達哉;H. Shiga
  • 通讯作者:
    H. Shiga
歪積型楕円型方程式の正値解の構造
应变积型椭圆方程正解的结构
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heittokangas;J.;Thoge;K.;羽鳥理;村田實
  • 通讯作者:
    村田實
The hitting distributions of a line for two dimensional Random Walks
二维随机游走的一条线的命中分布
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ikehata;M;M.Ohya;西山陽一;Kohei Uchiyama
  • 通讯作者:
    Kohei Uchiyama
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MURATA Minoru其他文献

MURATA Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MURATA Minoru', 18)}}的其他基金

Genome engineering and gene expression analysis in a model plant Arabidopsis thaliana
模式植物拟南芥的基因组工程和基因表达分析
  • 批准号:
    22310129
  • 财政年份:
    2010
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Asymptotic analysis of heat kernels and Green functions and its applications
热核与格林函数的渐近分析及其应用
  • 批准号:
    17340034
  • 财政年份:
    2005
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A synthetic study of positive solutions to elliptic and parabolic partial differential equations
椭圆型和抛物型偏微分方程正解的综合研究
  • 批准号:
    13440042
  • 财政年份:
    2001
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular analysis of rye-drived midget chromosomes by microdissection
通过显微切割对黑麦驱动的侏儒染色体进行分子分析
  • 批准号:
    13660007
  • 财政年份:
    2001
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of chromosome -specific DNA libraries by laser-microdissection-Molecular analysis of homoeologous group 1 chromosomes in wheat.
通过激光显微切割小麦同源 1 组染色体的分子分析构建染色体特异性 DNA 文库。
  • 批准号:
    11660005
  • 财政年份:
    1999
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A versatile study of positive solutions to parabolic and elliptic partial differential equations
抛物型和椭圆型偏微分方程正解的通用研究
  • 批准号:
    11440039
  • 财政年份:
    1999
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Structure of positive solutions to second order elliptic and parabolic partial differential equations
二阶椭圆和抛物型偏微分方程正解的结构
  • 批准号:
    09440049
  • 财政年份:
    1997
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MOLECULAR STUDIES ON NUCLEAR GENE (S) INTERACTING RYE CYTOPLASM ORDERING OF YAC CLONES TO IDENTIFY THE GENE (S)
核基因 (S) 与 YAC 克隆黑麦细胞质排序相互作用的分子研究以鉴定基因 (S)
  • 批准号:
    06660007
  • 财政年份:
    1994
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
MOLECULAR STUDIES ON NUCLEAR GENE(S) INTERACTING WITH RYE CYTOPLASM Construction of YAC library with telomere sequences
核基因与黑麦细胞质相互作用的分子研究 端粒序列 YAC 文库的构建
  • 批准号:
    04660006
  • 财政年份:
    1992
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Molecular Studies on Nuclear Gene(s) Interacting with Rye Cytoplasm
核基因与黑麦细胞质相互作用的分子研究
  • 批准号:
    02660007
  • 财政年份:
    1990
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Mathematical Analysis of Free Boundary Problems in EMHD and Related Topics
EMHD 中自由边界问题的数学分析及相关主题
  • 批准号:
    26400176
  • 财政年份:
    2014
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of the non-Newtonian fluids flow
非牛顿流体流动的数学分析
  • 批准号:
    23654055
  • 财政年份:
    2011
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
汎関数解析学とファインマン経路積分の数学的研究
泛函分析和费曼路径积分的数学研究
  • 批准号:
    21654023
  • 财政年份:
    2009
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Complex System Based Mathematical Analysis of Non-normal Distribution Family and Stochastic Differential Equation and Their Applications to Risk Management
基于复杂系统的非正态分布族和随机微分方程的数学分析及其在风险管理中的应用
  • 批准号:
    19510164
  • 财政年份:
    2007
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis of stability ofviscous incompressible flows in several unbounded domains
多个无界域粘性不可压缩流稳定性的数学分析
  • 批准号:
    16540143
  • 财政年份:
    2004
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical analysis on the structure of solutions for the fundamental systems of equations in continuum mechanics
连续介质力学基本方程组解结构的数学分析
  • 批准号:
    15340050
  • 财政年份:
    2003
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis of thermal convection equations
热对流方程的数学分析
  • 批准号:
    14340057
  • 财政年份:
    2002
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical Analysis on Change of Patterns by Anisotropy and Diffusion
各向异性和扩散引起的图案变化的数学分析
  • 批准号:
    14204011
  • 财政年份:
    2002
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Mathematical analysis of System Modeling and their applications
系统建模的数学分析及其应用
  • 批准号:
    14540102
  • 财政年份:
    2002
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis to Nonlinear Partial Differential Equations in Mathematical Science and Its Applications
数学科学中非线性偏微分方程的数学分析及其应用
  • 批准号:
    13440053
  • 财政年份:
    2001
  • 资助金额:
    $ 2.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了