Research on space curve and its Galois line
空间曲线及其伽罗瓦线的研究
基本信息
- 批准号:15540016
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let C, L and L_0 be a curve and lines in the projective three space P^3 respectively. Consider a projection p_L:P^3--→L_0 with center L, where L and L_0 have no intersection. Restricting p_L to C, we get a morphism p_L|C:C--→L_0 and an extension of fields:k(C)/k(L_0). We have studied the algebraic structure of the extension and the geometric one of C. If this extension is Galois, then we call L a Galois line. In particular we have studied the structure of the Galois group and the number of Galois lines for some special cases, for example, we obtained that the number is at most one if the degree of C is a prime number. After completed the first aims, we started to study the following research : Let V be a smooth projective variety and D be a very ample divisor. Let f:V--→ P^N be the projective embedding associated with |D|. Consider a projection p with a center W such that dim W=N-n-1 and f(V) does not meet W. Ifp f:V--→ P^n induces a Galois extension of function fields, then (V,D) is said to define a Galois embedding. Under this condition we have shown several properties of the Galois group of the covering. After general discussions we study the subject for abelian surfaces in detail.
令C,L和L_0分别为投射三个空间p^3中的曲线和线条。考虑一个投影p_l:p^3--→l_0带中心L,其中l和l_0没有相交。将p_l限制为c,我们得到了态度p_l | c:c - →l_0和字段的扩展:k(c)/k(l_0)。我们已经研究了延伸的代数结构和C的几何形状。如果此扩展为galois,那么我们称之为l galois线。特别是我们研究了Galois组的结构和某些特殊情况的Galois线数量,例如,如果C的程度是质量数,则最多获得数字。完成第一个目标后,我们开始研究以下研究:让V是一个平稳的投射品种,并且D是一个非常足够的除数。令f:v-→p^n是与| d |相关的投射嵌入。考虑一个具有中心w的投影p,使得dim w = n-n-1和f(v)不符合w。在这种情况下,我们显示了覆盖范围的Galois组的几个特性。在一般讨论之后,我们详细研究了阿贝尔表面的主题。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Families of Galois closure curves for plane quartic curves
平面四次曲线的伽罗瓦闭合曲线族
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:W.Nakai;T.Nakanishi;Ma.Cristina Lumakin Duyaguit;Ma.Cristina Lumakin Duyaguit;Ma.Cristina Lumakin Duyaguit;Hisao Yoshihara
- 通讯作者:Hisao Yoshihara
Galois lines for normal elliptic space curves
正规椭圆空间曲线的伽罗瓦线
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:W.Nakai;T.Nakanishi;Ma.Cristina Lumakin Duyaguit
- 通讯作者:Ma.Cristina Lumakin Duyaguit
Hisao Yoshihara: "Families of Galois closure curves for plane quartic curves"Journal of Mathematics of Kyoto University. (印刷中).
Hisao Yoshihara:“平面四次曲线的伽罗瓦闭合曲线族”京都大学数学杂志(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YOSHIHARA Hisao其他文献
YOSHIHARA Hisao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YOSHIHARA Hisao', 18)}}的其他基金
Study on the various structures of algebraic surfaces by Galois embeddings
利用伽罗瓦嵌入研究代数曲面的各种结构
- 批准号:
21540033 - 财政年份:2009
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the Galois embeddings of K3 surfaces
K3曲面的伽罗瓦嵌入研究
- 批准号:
19540016 - 财政年份:2007
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Galois embeddings of algebraic surfaces
代数曲面的伽罗瓦嵌入研究
- 批准号:
17540018 - 财政年份:2005
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the structures of hypersurfaces and their function fields
超曲面结构及其函数场研究
- 批准号:
13640013 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Degree of irrationalities of algebraic surfaces with Kodaira dimension zero
小平维数为零的代数曲面的无理度
- 批准号:
10640013 - 财政年份:1998
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hypersurfaces in the three dimensional projective spaces and its complement
三维射影空间中的超曲面及其补集
- 批准号:
02640027 - 财政年份:1990
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Normal singularities and non-existence of plane curves
正常奇点和平面曲线不存在
- 批准号:
62540026 - 财政年份:1987
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Study on Glois embedding of surface of non-general type
非通用类型曲面的Glois嵌入研究
- 批准号:
24540036 - 财政年份:2012
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Branched covers and topology of open algebraic surfaces
开代数曲面的分支覆盖和拓扑
- 批准号:
22540052 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the structures of hypersurfaces and their function fields
超曲面结构及其函数场研究
- 批准号:
13640013 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois groups and fundamental groups
伽罗瓦群和基本群
- 批准号:
09440011 - 财政年份:1997
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)