Geometry of the flat tori in the sphere and non- linear wave equations
球面平面环面的几何形状和非线性波动方程
基本信息
- 批准号:15540059
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we studied geometry of flat tori in the 3-sphere, meromorphic mappings, surfaces of constant mean curvature and dynamical systems. The main results of this reseach are summarized as follows.1.Studies on flat tori in the 3-sphere. In this research, Y.Kitagawa studied the conjecture that any isometric deformation of compact surface in $S^3$ preserves the enclosed volume.As a result, he proved that the conjecture is ture for all flat tori in $S^3$.2.Studies on meromorphic mappings. In this research, Y.Aihara proved that for every hypersurface $D$ of degree $d$ in a complex projective space, there exists a holomorphic curve from the complex plane into the projective space whose deficiency for $D$ is positive and less than one.3.Studies on constant mean curvature surfaces and Backlund transformations. In this research, J.Inoguchi proved that Bianchi-Backlund transformation of a constant mean curvature surface is equivalent to the Darboux transformation and the simple type dressing.4.Studies on dynamical systems. In this research, K. Sakai proved that the $C^1$ interior of the set of expansive vector fields on a manifold is characterized as the set of vector fields without singularities satisfying both Axiom A and the quasi-transversality condition.
本文主要研究了三维球面中的平坦环面几何、亚纯映射、常平均曲率曲面和动力系统。本文的主要研究结果如下:1.三维球面中的平面环面的研究。在这一研究中,Y.Kitagawa研究了S^3 $中紧致曲面的等距变形保持封闭体积的猜想,并证明了该猜想对S^3 $中所有平坦环面都成立。2.亚纯映射的研究。Aihara证明了:对于复射影空间中的任意d次超曲面D,存在一条从复平面到射影空间的全纯曲线,其亏度D为正且小于1。3.常平均曲率曲面与Backlund变换的研究。在本研究中,J.Inoguchi证明了常平均曲率曲面的Bianchi-Backlund变换与Darboux变换和简单类型修饰等价。4.动力系统的研究。在本研究中,K. Sakai证明了流形上可扩张向量场集合的C^1 $内部被刻画为同时满足公理A和拟横截性条件的无奇点向量场集合。
项目成果
期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness problems for meromorphic mappings under condition on the preimages of divisors
除数原像条件下亚纯映射的唯一性问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Sakai;K.Moriyasu;W.Sun;Y.Aihara
- 通讯作者:Y.Aihara
Chracterizations of Bianchi-Backlund transformation of constant mean curvature surfaces
常平均曲率曲面的 Bianchi-Backlund 变换的表征
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:J.Inoguchi;S.Kobayashi
- 通讯作者:S.Kobayashi
Algebraic dependence of meromorphic mappings in value distribution theory
- DOI:10.1017/s0027763000008473
- 发表时间:2003
- 期刊:
- 影响因子:0.8
- 作者:Yoshihiro Aihara
- 通讯作者:Yoshihiro Aihara
S.Yu.Pilyugin, K.Sakai, A.A.Rodionova: "Orbital and weak shadowing Properties"Discrete and Continuous Dynamical Systems. 9. 287-308 (2003)
S.Yu.Pilyugin、K.Sakai、A.A.Rodionova:“轨道和弱阴影特性”离散和连续动力系统。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
RECENT TOPICS IN UNIQUENESS PROBLEM FOR MEROMORPHIC MAPPINGS
- DOI:10.1007/1-4020-7951-6_13
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yoshihiro Aihara
- 通讯作者:Yoshihiro Aihara
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KITAGAWA Yoshihisa其他文献
KITAGAWA Yoshihisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KITAGAWA Yoshihisa', 18)}}的其他基金
Studies on some open problems concerning flat tori in odd dimensional spheres
奇维球面平面环面若干开放问题的研究
- 批准号:
24540066 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on some open problems concerning flat tori in the unit 3-sphere
单位3球内平面环面若干开放问题的研究
- 批准号:
21540066 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of the flat tori in the 3-sphere and its higher dimensional generalization
3-球面平面环面的几何形状及其高维推广
- 批准号:
12640059 - 财政年份:2000
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Curvatures of Submanifolds
子流形曲率的研究
- 批准号:
10640061 - 财政年份:1998
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
辛几何中的开“格罗莫夫-威腾”不变量
- 批准号:10901084
- 批准年份:2009
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
- 批准号:
20K03575 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:
1945224 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Stability analysis of submanifold with symmetry
对称子流形的稳定性分析
- 批准号:
18K13420 - 财政年份:2018
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The representation formulas for a surface of higher codimension and a submanifold and their application
高余维曲面和子流形的表示公式及其应用
- 批准号:
17K05217 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Twistor theory in Submanifold geometry
子流形几何中的扭量理论
- 批准号:
16K05119 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
- 批准号:
15K04851 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on left-invariant geometric structures by submanifold theory
子流形理论研究左不变几何结构
- 批准号:
26287012 - 财政年份:2014
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research of Ricci soliton in terms of Submanifold theory
子流形理论下的Ricci孤子研究
- 批准号:
24540080 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
- 批准号:
24540090 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of geometry of symmetric spaces to submanifold theory
对称空间几何在子流形理论中的应用
- 批准号:
23540108 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




