Bifurcation structure of positive stationary solutions for a competition-diffusion system and its numerical verification
竞争扩散系统正平稳解的分岔结构及其数值验证
基本信息
- 批准号:15540124
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We intend to understand the mechanism of the coexistence by studying the existence and stability of positive stationary solutions for a competition-diffusion system, which describes the dynamics of the population density for a two competing species community. In earlier studies, for the case where the habitat of the community is an interval, we investigate the spatial profile and the distribution of eigenvalues to the positive stationary solution, and then we establish the global bifurcation structure of positive stationary solutions for the system. To do this, we employ mathematical methods such as the bifurcation theory and the comparison principle, and numerical methods such as the numerical computation and the numerical verification. It seems that enough results have not been obtained so far, because the habitat is in general a two- or three-dimensional region. In this research, we assume that the habitat is the inside of a ball, and try to study the bifurcation structure of radially symmetric positive stationary solutions for the system.It is hard to investigate the property of positive stationary solutions for this case, so that the information on the set of positive stationary solutions is not obtained enough to establish the bifurcation structure. However, it could be shown that the set of monotone positive stationary solutions is represented as the graph of a certain function with respect to the value of the positive stationary solution at the origin of the ball. Moreover, we see from the numerical verification that the secondary bifurcation of saddle-node type occurs. These facts give us a clue to understand the bifurcation structure.In the future, it will be necessary to solve some open problems such as what spatial profile each positive stationary solution has, what kind of entire positive stationary solution exists, and so on.
我们试图通过研究描述两种群竞争种群密度动态的竞争扩散系统正定态解的存在性和稳定性来理解共存的机制。在以前的研究中,对于群落的栖息地是区间的情况,我们研究了正平稳解的空间轮廓和特征值的分布,然后建立了系统正平稳解的全局分支结构。为此,我们采用了分叉理论和比较原理等数学方法,以及数值计算和数值验证等数值方法。到目前为止,似乎还没有得到足够的结果,因为栖息地一般是二维或三维的区域。在本研究中,我们假设栖息地是球的内部,并试图研究该系统的径向对称正平稳解的分支结构,但这种情况下正平稳解的性质很难被研究,因此关于正平稳解集的信息不足以建立该分支结构。然而,可以证明单调正定解的集合被表示为某一函数相对于球原点的正定解的值的图形。此外,从数值验证中可以看到,系统发生了鞍结型二次分叉。这些事实为我们理解分叉结构提供了线索。在未来,需要解决一些开放的问题,如每个正平稳解具有什么样的空间轮廓,存在什么样的完整正平稳解等。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Q.Fang: "A note on the condition number of a matrix"J. Comput. Appl. Math.. 157(1). 231-234 (2003)
Q.Fang:“关于矩阵条件数的注释”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Convergence of finite difference methods for convection-diffusion problems with singular solutions
具有奇异解的对流扩散问题的有限差分法的收敛性
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO;渕野 昌;AKIRA SUZUKI;Joerg Brendle;Sakae Fuchino;Sakae Fuchino;AKIRA SUZUKI;Yukio Kan-on;M.Shinoda;Yukio Kan-on;JOERG BRENDLE;M.Shinoda;Yukio Kan-on;M.Iizuka;Qing Fang;AKIRA SUZUKI;Yukio Kan-no;Yukio Kan-on;Joerg Brendle;Qing Fang;Sakae Fuchino;JOERG BRENDLE;JOERG BRENDLE;Qing Fang;Joerg Brendle;Qing Fang
- 通讯作者:Qing Fang
Q.Fang, Y.Shogenji, T.Yamamoto: "Error analysis of adaptive finite difference methods using stretching functions for polar coordinate form of Poisson-type equation"Numer.Funct.Anal.Optim.. 24・1-2. 17-44 (2003)
Q.Fang、Y.Shogenji、T.Yamamoto:“使用泊松型方程的极坐标形式的拉伸函数的自适应有限差分方法的误差分析”Numer.Funct.Anal.Optim.. 24・1-2。 44 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On the structure of the set of stationary solutions for a system of reaction-diffusion equations with competitive interaction
具有竞争相互作用的反应扩散方程组平稳解集的结构
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;JOERG BRENDLE;SAKAE FUCHINO;SAKAE FUCHINO;渕野 昌;AKIRA SUZUKI;Joerg Brendle;Sakae Fuchino;Sakae Fuchino;AKIRA SUZUKI;Yukio Kan-on;M.Shinoda;Yukio Kan-on;JOERG BRENDLE;M.Shinoda;Yukio Kan-on
- 通讯作者:Yukio Kan-on
Z.-C.Li, T.Yamamoto, Q.Fang: "Superconvergence of solution derivatives for the Shortley-Weller difference approximation of Poisson's equation. I. Smoothness problems"J. Comput. Appl. Math.. 151(2). 307-333 (2003)
Z.-C.Li,T.Yamamoto,Q.Fang:“泊松方程的 Shortley-Weller 差分近似解导数的超收敛。I. 平滑问题”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAN-ON Yukio其他文献
KAN-ON Yukio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAN-ON Yukio', 18)}}的其他基金
Structure on the Set of Stationary Solutions for a Two Competing Species Model with Density-Dependent Diffusion
具有密度相关扩散的两种竞争物种模型的稳态解集的结构
- 批准号:
22540138 - 财政年份:2010
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation structure of stationary solutions for a reaction-diffusion system with density-dependent diffusion
密度依赖扩散反应扩散系统稳态解的分叉结构
- 批准号:
19540136 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions for a system of reaction-diffusion equations with density-dependent diffusion.
具有密度相关扩散的反应扩散方程组解的渐近行为。
- 批准号:
12640213 - 财政年份:2000
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Stabilization of natural motions embedded in chaotic responses of a multilink robot; Applications of bifurcation theory
多连杆机器人混沌响应中嵌入的自然运动的稳定性;
- 批准号:
21K04109 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2021
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Complex Dynamics in Biological Systems: A Bifurcation Theory Approach
生物系统中的复杂动力学:分岔理论方法
- 批准号:
RGPIN-2020-06414 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications in mathematical biology
分岔理论及其在数学生物学中的应用
- 批准号:
RGPIN-2018-06520 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




