Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
基本信息
- 批准号:RGPIN-2020-05009
- 负责人:
- 金额:$ 1.53万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2021
- 资助国家:加拿大
- 起止时间:2021-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the study of systems of mathematical equations, Bifurcation Theory deals with cases in which small changes in the parameters of the system can lead to qualitative (i.e. topological) changes in the solutions of the equations. Bifurcation Theory tells us that this "cause and effect" relationship can be highly nonlinear, but typically will occur only in a few generic ways, called bifurcations, which mathematicians are beginning to understand very well. In the present work, the equations under study are systems of nonlinear differential equations; that is, equations that determine how a system evolves with time. Equations of this kind are widely used in science, and help in the understanding of many kinds of real systems, for example in physics, engineering, biology and climate. This research program has two objectives. In the field of mathematics, it will contribute to the advancement of Bifurcation Theory itself, by adding new types of bifurcations to the knowledge base. Outside of mathematics, this research program will extend the application of ideas of Bifurcation Theory to real-world systems, with the goal of better understanding how these systems are likely to change. Some examples of systems that have been investigated from this perspective are: global climate change, patterns of vibrations in mechanical systems, onset of certain cardio-respiratory diseases in humans, and sustainable biodiversity in ecology. Of all these applications, climate change is selected as the first priority for this research proposal. Very recently, coworkers and I have established that bifurcations may occur in the Earth's climate system, and actually have occurred in climates of the distant past. A preliminary analysis has concluded that a bifurcation to a dramatically warmer climate state awaits us in the future, unless anthropogenic forcing, caused by increased carbon dioxide production, is severely curtailed. This result adds mathematical rigour and gravitas to the dire predictions that have been issued by the Intergovernmental Panel on Climate Change. Further investigations of this catastrophic bifurcation and its mitigation are proposed, using a hierarchy of more sophisticated climate models.
在数学方程组的研究中,分叉理论处理系统参数的微小变化可能导致方程解的定性(即拓扑)变化的情况。分叉理论告诉我们,这种“因果”关系可以是高度非线性的,但通常只会以几种常见的方式发生,称为分叉,数学家们开始非常好地理解。在目前的工作中,所研究的方程是非线性微分方程系统,也就是说,方程,确定系统如何随时间演变。这类方程在科学中有着广泛的应用,有助于理解许多真实的系统,例如物理学、工程学、生物学和气候学。 这项研究计划有两个目标。在数学领域,它将有助于分支理论本身的进步,通过增加新类型的分支知识库。在数学之外,该研究计划将把分叉理论的思想应用到现实世界的系统中,目的是更好地了解这些系统可能会如何变化。从这个角度研究的系统的一些例子是:全球气候变化,机械系统中的振动模式,人类某些心肺疾病的发病,以及生态学中的可持续生物多样性。 在所有这些应用中,气候变化被选为本研究提案的第一优先事项。最近,我和我的同事们已经确定,地球气候系统中可能会发生分叉,而且实际上在遥远的过去的气候中也发生过。初步分析得出的结论是,除非由二氧化碳产量增加引起的人为强迫得到严重遏制,否则未来将出现一个显著变暖的气候状态。这一结果为政府间气候变化专门委员会(Intergovernmental Panel on Climate Change)发布的可怕预测增添了数学上的严谨性和庄严性。进一步调查这一灾难性的分歧和缓解建议,使用层次结构更复杂的气候模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Langford, William其他文献
Langford, William的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Langford, William', 18)}}的其他基金
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2022
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation Theory and Abrupt Climate Change
分岔理论与气候突变
- 批准号:
RGPIN-2020-05009 - 财政年份:2020
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2007 - 财政年份:2011
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2007 - 财政年份:2010
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2007 - 财政年份:2009
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2007 - 财政年份:2008
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2007 - 财政年份:2007
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2002 - 财政年份:2006
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2002 - 财政年份:2005
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
Bifurcation theory and applications
分岔理论及应用
- 批准号:
8329-2002 - 财政年份:2004
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
- 批准号:
DP240101511 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Discovery Projects
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Studentship
Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
- 批准号:
EP/Y014030/1 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Research Grant
Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
- 批准号:
EP/Z000106/1 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Research Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Continuing Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 1.53万 - 项目类别:
Standard Grant