Asymptotic behavior of an aggregating pattern of the reaction diffusion equation with the advection term

具有平流项的反应扩散方程的聚集模式的渐近行为

基本信息

  • 批准号:
    15540128
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

1.For the chemotaxis growth model, we show the traveling wave solution with a triple junction in the stripe domain by the numerical simulations. In order to show the existence of the solution, we first construct the approximate solution of this solution by the interface equation corresponding to the original model equation. Moreover, it can be shown die relation of the velocity of the traveling solution and the intensity of the chemotaxis.2.For the adsorbate-induced phase transition model, we show the existence of the nonnegative global solution and exponential attractor under the periodic boundary condition in two dimensional bounded domain. Due to the appropriate choice of the functional space, we prove that the sqeezing property is hold for the dynamical system obtained from the equation.3.For the adsorbate-induced phase transition model in the plane, we show the existence of the nonnegative global solutions under the boundary condition such that the solution tends to the constant equilibrium solution at the edge of the plane. In this situation, we can not prove the existence of the exponential attractor.4.For the adsorbate-induced phase transition model in the bounded domain of the plane, we prove the existence of the global solutions and exponential attractor under the Newman boundary condition. By the numerical simulations, we show the hexagonal and stripe patterns and so on for the parameters in the neighborhood of the bifurcation point of constant equilibrium solution.5.For the chemotaxis growth model, we need consider the sensitive function with the singularity at the origin from the biological view points. For the bounded domain in the plane, we prove that the solution tends to the trivial solution if the initial data is small with respect to some functional norm. Moreover, there is a nonempty omega limit set in another case.
1.对于趋化性生长模型,我们通过数值模拟给出了带三重结的行波解。为了证明解的存在性,我们首先通过与原模型方程相对应的界面方程构造此解的近似解。2.对于吸附诱导相变模型,在二维有界区域上周期边界条件下,证明了非负整体解和指数吸引子的存在性.通过对泛函空间的适当选择,我们证明了由方程得到的动力系统具有压缩性。3.对于平面内的吸附物诱导相变模型,在边界条件下,我们证明了非负整体解的存在性,使得解在平面边缘趋于常数平衡解。4.对于平面有界区域上的吸附诱导相变模型,在纽曼边界条件下,证明了整体解和指数吸引子的存在性。通过数值模拟,我们发现在常数平衡解的分岔点附近,参数呈现六边形、条纹等模式。5.对于趋化性生长模型,从生物学的角度考虑,需要考虑原点具有奇异性的敏感函数。对于平面上的有界区域,我们证明了当初始数据关于某个泛函范数较小时,解趋于平凡解。此外,在另一种情况下,存在非空的Ω极限集。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Global solution to a reaction diffusion phase transition system in R^2
R^2 中反应扩散相变系统的全局解
Exponential attractor for an adsorbate-induced phase transition model in non smooth domain
  • DOI:
    10.18910/8871
  • 发表时间:
    2006-03
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Y. Takei;M. Efendiev;T. Tsujikawa;A. Yagi
  • 通讯作者:
    Y. Takei;M. Efendiev;T. Tsujikawa;A. Yagi
Numerical computations and pattern formation for adsorbate - induced phase transition model
吸附质诱导相变模型的数值计算和模式形成
Tohru Tsujikawa: "Singular limit analysis of aggregating patterns in chemotaxis-growth model"数理解析研究所講究録. 1330. 149-160 (2003)
Tohru Tsujikawa:“趋化生长模型中聚集模式的奇异极限分析”数学研究所 Kokyuroku。1330. 149-160 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Chemotaxis and growth system with singular sensitivity function
  • DOI:
    10.1016/j.nonrwa.2004.08.011
  • 发表时间:
    2005-04
  • 期刊:
  • 影响因子:
    2
  • 作者:
    M. Aida;Koichi Osaki;T. Tsujikawa;A. Yagi;M. Mimura
  • 通讯作者:
    M. Aida;Koichi Osaki;T. Tsujikawa;A. Yagi;M. Mimura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TSUJIKAWA Tohru其他文献

TSUJIKAWA Tohru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TSUJIKAWA Tohru', 18)}}的其他基金

Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
  • 批准号:
    20540122
  • 财政年份:
    2008
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reduction of reaction diffusion system and asymptotic analysis
反应扩散系统的约简与渐近分析
  • 批准号:
    17540125
  • 财政年份:
    2005
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singular limit system and pattern formation of some reaction-diffusion system
某种反应扩散系统的奇异极限系统和模式形成
  • 批准号:
    10640143
  • 财政年份:
    1998
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Analysis of the double chemotaxis model with the effect of fluid
流体作用下的双趋化模型分析
  • 批准号:
    22KJ2930
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reconstruction of chemotaxis model of bacteria by observing the flagellar movement and prediction of the collective movement
通过观察鞭毛运动重建细菌趋化模型并预测集体运动
  • 批准号:
    19K04193
  • 财政年份:
    2019
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Morphological Analysis of Fungal Growth based on Reaction- Diffusion- Chemotaxis Model
基于反应-扩散-趋化模型的真菌生长数值形态分析
  • 批准号:
    26630264
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了