Reduction of reaction diffusion system and asymptotic analysis
反应扩散系统的约简与渐近分析
基本信息
- 批准号:17540125
- 负责人:
- 金额:$ 2.03万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. For the chemotaxis growth model(1) Existence of a traveling front solution and its stability in a channel domain with Neumann boundary condition by using singular limit analysis(2) Existence of a symmetric stationary solution and its stability in 3 dimensional space by using the reduction system(3) Existence of time global non-negative solution and finite dimensional exponential attractor in the case of singular sensitivity function(4) Instability of the non-negative constant solution and divergence of the dimension of the exponential attractor due to the increases of the chemotaxis effect2. For the adsorbate-induced phase transition model(1) Existence of time global non-negative solution and finite dimensional exponential attractor under periodic boundary condition in a finite segment(2) Existence of time global non-negative solution and finite dimensional exponential attractor under Newmann boundary condition in 2dimensional finite domain with C^2 class boundary or convex domain(3) Existence of the stripe and hexagonal stationary solutions due to the bifurcation from non-negative constant solution in the square domain with Newmann boundary condition3. For the forest kinematic model(1) Introduction of three kinds of omega limit sets and investigation of the basic property of these limit sets
1.对于趋化性增长模型(1)在Neumann边界条件下,利用奇异极限分析方法,在通道区域上得到了行波解的存在性及其稳定性;(2)在三维空间中,利用约化系统得到了对称定态解的存在性及其稳定性;(3)在奇异灵敏度函数的情况下,得到了时间全局非负解和有限维指数吸引子的存在性;(4)非负常数解的不稳定性和指数吸引子的维数的发散,由于趋化效应的增加2。对于吸附诱导相变模型(1)在有限段上周期边界条件下时间整体非负解和有限维指数吸引子的存在性(2)在具有C^2类边界的二维有限区域或凸区域上Newmann边界条件下时间整体非负解和有限维指数吸引子的存在性(3)在Newmann边界条件下,由于正方形区域中非负常数解的分支,条纹和六边形定态解的存在性3.对于森林运动学模型(1)引入了三种Ω极限集并研究了它们的基本性质
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemotaxis and growth system with singular sensitivity function
- DOI:10.1016/j.nonrwa.2004.08.011
- 发表时间:2005-04
- 期刊:
- 影响因子:2
- 作者:M. Aida;Koichi Osaki;T. Tsujikawa;A. Yagi;M. Mimura
- 通讯作者:M. Aida;Koichi Osaki;T. Tsujikawa;A. Yagi;M. Mimura
Exponential attractor for an adsorbate-induced phase transition model with periodic boundary condition
具有周期性边界条件的吸附物诱导相变模型的指数吸引子
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yasuhiro;Takei
- 通讯作者:Takei
Stripe and hexagonal patterns in an advection-reaction-diffusion system
平流反应扩散系统中的条纹和六边形图案
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Minaru Kawamura;Takuji Morimoto;Yoshiyuki Mori;RyuichiSawae;Kenichi Takarabe;Yoshinori;Manmoto;Toshio Sakata;辻川 亨
- 通讯作者:辻川 亨
Pattern dynamics of chemotaxis-growth model in 2 dimensional domain
二维域趋化生长模型的模式动力学
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Toshio Sakata;Rvuichi Sawae;辻川 亨
- 通讯作者:辻川 亨
Numerical computations and pattern formation for adsorbate-induced phase transition model
吸附物诱导相变模型的数值计算和模式形成
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Y.Takei;T.Tsujikawa;A.Yagi
- 通讯作者:A.Yagi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUJIKAWA Tohru其他文献
TSUJIKAWA Tohru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUJIKAWA Tohru', 18)}}的其他基金
Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
- 批准号:
20540122 - 财政年份:2008
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of an aggregating pattern of the reaction diffusion equation with the advection term
具有平流项的反应扩散方程的聚集模式的渐近行为
- 批准号:
15540128 - 财政年份:2003
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singular limit system and pattern formation of some reaction-diffusion system
某种反应扩散系统的奇异极限系统和模式形成
- 批准号:
10640143 - 财政年份:1998
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
On some nonlinear reaction diffusion equation arising in population genetics
群体遗传学中一些非线性反应扩散方程的探讨
- 批准号:
22K03369 - 财政年份:2022
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The dynamics of a system of a single reaction-diffusion equation coupled with an ordinary differential equation
单反应扩散方程与常微分方程耦合的系统动力学
- 批准号:
26400156 - 财政年份:2014
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analyses on layers arising in spatially inhomogeneous reaction diffusion equation
空间非均匀反应扩散方程层层分析
- 批准号:
24540207 - 财政年份:2012
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
- 批准号:
20540122 - 财政年份:2008
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On a study of a solution with a transition layer for a bistable reaction diffusion equation with a heterogeneous environment
非均相环境双稳态反应扩散方程带过渡层解的研究
- 批准号:
20740098 - 财政年份:2008
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Asymptotic behavior of an aggregating pattern of the reaction diffusion equation with the advection term
具有平流项的反应扩散方程的聚集模式的渐近行为
- 批准号:
15540128 - 财政年份:2003
- 资助金额:
$ 2.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlocal reaction diffusion equation with temporal delays
具有时间延迟的非局部反应扩散方程
- 批准号:
36475-2002 - 财政年份:2002
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Reaction-diffusion equation with temporal delay
具有时间延迟的反应扩散方程
- 批准号:
36475-1994 - 财政年份:1997
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Reaction-diffusion equation with temporal delay
具有时间延迟的反应扩散方程
- 批准号:
36475-1994 - 财政年份:1996
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual
Reaction-diffusion equation with temporal delay
具有时间延迟的反应扩散方程
- 批准号:
36475-1994 - 财政年份:1995
- 资助金额:
$ 2.03万 - 项目类别:
Discovery Grants Program - Individual