Singular limit system and pattern formation of some reaction-diffusion system
某种反应扩散系统的奇异极限系统和模式形成
基本信息
- 批准号:10640143
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) A chemotaxis-growth model and an absorbate-induced phase transition model are able to treat in the framework of the reaction-diffusion system with advection terms. The existence of the local solution of these systems is proved in the general semi-group theory. By using the a priori estimate and the comparison theorem, it is shown that the global solutions of these system exist in the suitable functional space. Moreover, we prove that the dimension of the exponential attractor, which is some kind of property governed the dynamics of the system due to Temam et. al, is finite by showing the squeezing property.(2) It is generally difficult to determine the dimension of the exponential attractor except for the reaction diffusion equation which is not a system, and the one space dimension of the considered domain. For the first step to show it, we consider the existence of stationary solutions and traveling solutions and their stability. We prove these of the planar pulse stationary solutions, planar traveling front solutions and radial symmetric pulse stationary solutions of the chemotaxis-growth model in 2-dimensional plane. Showing the stability of these solutions, we must estimate the distribution of the eigenvalues of the linearized eigenvalue problem of the system. This problem is solved by the singular limit analysis because that the diffusion coefficient of the system is small. We first show that for the small coefficient t he dominant term of the eigenvalues determined the stability is corresponding to the coefficient of the linear differential ordinary equation due to the singular limit system, which is obtained by the reduction of the original reaction diffusion system. From these results, we will have the singular limit system of the absorbate-induced phase transition model because of the smallness of the diffusion coefficient.
(1)趋化生长模型和吸收物诱导相变模型能够在具有平流项的反应扩散系统框架中进行处理。这些系统局部解的存在性在一般半群论中得到了证明。通过先验估计和比较定理,表明这些系统的全局解存在于合适的函数空间中。此外,我们证明了指数吸引子的维数,这是由于 Temam 等人控制系统动力学的某种属性。 al, 是有限的,通过显示挤压性质。(2) 除了反应扩散方程不是一个系统以及所考虑的域的一空间维数之外,一般很难确定指数吸引子的维数。为了展示这一点,我们首先考虑静止解和移动解的存在性及其稳定性。我们证明了二维平面趋化生长模型的平面脉冲平稳解、平面行进前沿解和径向对称脉冲平稳解。为了证明这些解的稳定性,我们必须估计系统线性化特征值问题的特征值分布。由于系统的扩散系数较小,该问题通过奇异极限分析来解决。我们首先证明,对于小系数,决定稳定性的特征值的主项对应于奇异极限系统的线性微分常方程的系数,这是通过原始反应扩散系统的约简得到的。从这些结果中,由于扩散系数很小,我们将得到吸收物诱导相变模型的奇异极限系统。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Koichi Osaki, Tohru Tsujikawa, Atsushi Yagi, Masayasu Mimura: "Exponential attractor for a chemotaxis-growth system of eqautions"Nonlinear Analysis. (2002)
Koichi Osaki、Tohru Tsujikawa、Atsushi Yagi、Masayasu Mimura:“趋化增长方程系统的指数吸引子”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koichi Osaki, Tohru Tsujikawa, Atsushi Yagi and Masayasu Mimura: "Exponential attractor for a chemotaxis-growth system of equations"Nonlinear Analysis. (2002)
Koichi Osaki、Tohru Tsujikawa、Atsushi Yagi 和 Masayasu Mimura:“趋化生长方程组的指数吸引子”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tohru Tsujikawa, Atsushi Yagi: "Exponential attractor for an adsorbate-induced phase transition model"Kyushu Journal of Mathematics. 56. 1-24 (2002)
Tohru Tsujikawa、Atsushi Yagi:“吸附物诱导相变模型的指数吸引子”九州数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsuo Funaki, Masayasu mimura, Tohru Tsujikawa: "Traveling front solutions arising in a chemotaxis-growth model"Journal of Mathematical Biology. (2002)
Mitsuo Funaki、Masayasu mimura、Tohru Tsujikawa:“趋化生长模型中出现的移动前沿解决方案”数学生物学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Koich Osaki,Tohru,Tsujikawa Alsushi Yagi,Murayasu Mimura: "Exponential attractor for a chemotaxis - Growth System of Equations"Nonlinear Analysis.
Koich Osaki、Tohru、Tsujikawa Alsushi Yagi、Murayasu Mimura:“趋化性的指数吸引子 - 增长方程组”非线性分析。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TSUJIKAWA Tohru其他文献
TSUJIKAWA Tohru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TSUJIKAWA Tohru', 18)}}的其他基金
Study on the global structure of the stationary solutions of Reaction diffusion equation and its limiting system
反应扩散方程平稳解的全局结构及其极限系统研究
- 批准号:
20540122 - 财政年份:2008
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reduction of reaction diffusion system and asymptotic analysis
反应扩散系统的约简与渐近分析
- 批准号:
17540125 - 财政年份:2005
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of an aggregating pattern of the reaction diffusion equation with the advection term
具有平流项的反应扩散方程的聚集模式的渐近行为
- 批准号:
15540128 - 财政年份:2003
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Applications of Geometrical Singular Perturbation Theory in Hyperplasticity Accelerated Ratcheting Models
几何奇异摄动理论在超塑性加速棘轮模型中的应用
- 批准号:
2888423 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Studentship
Global structure of solutions for differential equations of singular perturbation type and exact WKB analysis
奇异摄动型微分方程解的全局结构及精确WKB分析
- 批准号:
19H01794 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Painlevé paradox and geometric singular perturbation theory
Painlevé 悖论和几何奇异微扰理论
- 批准号:
1939397 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
Studentship
Dynamical Systems and Singular Perturbation Theory for Multiscale Reaction-Diffusion Systems
多尺度反应扩散系统的动力系统和奇异摄动理论
- 批准号:
1616064 - 财政年份:2016
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Geometric Singular Perturbation Analysis of a Mathematical Model of Stem Cells
干细胞数学模型的几何奇异摄动分析
- 批准号:
478556-2015 - 财政年份:2015
- 资助金额:
$ 2.37万 - 项目类别:
University Undergraduate Student Research Awards
Phantom: A topological method to analyze macro-system and its singular perturbation
Phantom:一种分析宏观系统及其奇异摄动的拓扑方法
- 批准号:
15K13532 - 财政年份:2015
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The structure theory of differential equations by the algebraic analysis of singular perturbation theory
奇异摄动理论的代数分析微分方程的结构理论
- 批准号:
24340026 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Singular perturbation/bifurcation analysis of the cardiac sinoatrial node model in consideration of its heterogeneous structure and the study on the generation mechanism of synchronized oscillations
考虑异质结构的心脏窦房结模型奇异摄动/分岔分析及同步振荡产生机制研究
- 批准号:
24500274 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical systems and singular perturbation theory for multi-scale reaction-diffusion phenomena
多尺度反应扩散现象的动力系统和奇异摄动理论
- 批准号:
1109587 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Nonlinear hyperbolic-parabolic singular perturbation
非线性双曲-抛物线奇异摄动
- 批准号:
19540199 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




