Statistical properties of complex systems with subexponetnatial instability and phase transition

具有次指数不稳定和相变的复杂系统的统计特性

基本信息

  • 批准号:
    15540135
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

One of the purpose of this project is to clarify how statistical properties of complex systems is influenced by subexponential instability of the dynamics. In particular, we direct our attention to non-hyperbolic phenomena exhibiting phase transitions. For this purpose, piecewise invertible systems with generalized indifferent periodic orbits associated to a given potential function are considered. For such systems, it was shown in [1] that the presence of such orbits causes non-uniqueness of equilibrium states (phase transitions) and non-Gibbsianness of equilibrium measures. More specifically, we established in [1] that non-Gibbsian behaviour of equilibrium states in the sense of Bowen, non-differentiability of the pressure function (phase transiton), powerlike tails of the distribution of the stopping times over hyperbolic regions, and the Hausdorff dimension of level sets associated to pointwise dimension. In particular, non-differentiability of pressure functions is related to multifractal problem. We also established in [2] that the natural extensions of invariant ergodic weak Gibbs measures absolutely continuous with respect to weak Gibbs conformal measures possess a version of u -Gibbs property. In particular, if dynamical potentials admit generalized indifferent periodic points, then the natural extensions exhibit non-Gibbsian character in statistical mechanics. Another purpose of this project is to associate non-Gibbsian weak Gibbs measures for intermittent maps to non-Gibbsian weakly Gibbssian states in statistical mechanics in the sense of Dobrushin. This purpose was achiedved in [ 31 and we showed a higher dimensional intermittent map of which Sinai-Bowen-Ruelle measure is a weak Gibbs equilibrium state and a weakly Gibbsian state in the sense of Dobrushin admitting essential discontinuities in its conditional probabilities.
这个项目的目的之一是阐明动力学的次指数不稳定性如何影响复杂系统的统计特性。特别是,我们将我们的注意力集中在显示相变的非双曲现象上。为此,考虑了具有与给定势函数相关的广义不同周期轨道的分段可逆系统。对于这类系统,文献[1]指出,这些轨道的存在导致平衡态(相变)的非唯一性和平衡测度的非吉布斯性质。更具体地说,我们在文[1]中建立了平衡态在Bowen意义下的非吉布斯行为,压力函数(相变)的不可微性,双曲区域上停止时间分布的类似幂的尾巴,以及与点态维度相关的水平集的Hausdorff维度。特别地,压力函数的不可微性与多重分形问题有关。我们在文[2]中还证明了不变遍历弱Gibbs测度相对于弱Gibbs共形测度绝对连续的自然扩张具有某种形式的u-Gibbs性质。特别地,如果动态势允许广义不同的周期点,那么自然扩张在统计力学中表现出非吉布斯性质。这个项目的另一个目的是在Dobrushin意义下将间歇映射的非Gibbsian弱Gibbs度量与统计力学中的非Gibbsian弱Gibssian态联系起来。这一目的是在文献[31]中实现的,我们证明了一个高维间歇映射,其中Sinai-Bowen-Ruelle测度是弱Gibbs平衡态和Dobrushin意义下的弱Gibbsian态,Dobrushin允许在其条件概率中存在本质的间断。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-Gibbsianness of SRB measures for the natural extension of Intermittent systems
间歇系统自然扩展的 SRB 测量的非吉布斯性
Thermodynamic formalism for countable to one Markov systems
可数到一个马尔可夫系统的热力学形式主义
Phase transition, Non-Gibbsianness and Subexponential Instability
相变、非吉布斯性和次指数不稳定性
Michiko Yuri: "Weak Gibbs measures for Intermittent systems and Weakly Gibbsian States in Statistical Mechanics"Communications in Mathematical Physics. Vol241. 453-466 (2003)
Michiko Yuri:“统计力学中间歇系统的弱吉布斯测量和弱吉布斯状态”数学物理通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Weak Gibbs measures for intermittent systems and weakly Gibbsian states in statistical mechanics
统计力学中间歇系统的弱吉布斯测度和弱吉布斯状态
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YURI Michiko其他文献

YURI Michiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YURI Michiko', 18)}}的其他基金

Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
  • 批准号:
    21340018
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
  • 批准号:
    19540109
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Gibbsianness and phase transition in complex systems
复杂系统中的非吉布斯性和相变
  • 批准号:
    17540132
  • 财政年份:
    2005
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
  • 批准号:
    13640133
  • 财政年份:
    2001
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of equilibrium states for complex systems
复杂系统平衡状态的统计特性
  • 批准号:
    11640134
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
  • 批准号:
    09640289
  • 财政年份:
    1997
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
  • 批准号:
    2339326
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Continuing Grant
Landscape sensitivity to past and future climate: Solving the intermittency puzzle
景观对过去和未来气候的敏感性:解决间歇性难题
  • 批准号:
    2743977
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Synchronization and intermittency of the two point motion.
两点运动的同步性和间歇性。
  • 批准号:
    2751231
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Relaxation, Intermittency and Dissipation in a Collisionless Plasma
无碰撞等离子体中的弛豫、间歇和耗散
  • 批准号:
    2108834
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Mammalian behavioral discrimination and neural processing of naturalistic odor plumes based on intermittency
基于间歇性的哺乳动物行为辨别和自然气味羽流的神经处理
  • 批准号:
    10269918
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
RII Track-2 FEC: Aquatic Intermittency Effects on Microbiomes in Streams (AIMS)
RII Track-2 FEC:水生间歇性对溪流中微生物组的影响 (AIMS)
  • 批准号:
    2019603
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了