On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
基本信息
- 批准号:09640289
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1997)One of purposes of this project is to establish Large Deviation results for systems without uniformly hyperbolicity. About this problem, I solved it as follows : For piecewise C^1-Bernoulli maps with one indifferent periodicorbits, Large Deviation results for preimages weighted by the derivativeswere established under certain conditions, more precisely, upper boundsin the level 2 Large Deviation Principle <bounded integral>. To solve the problem, Prof.M.Pollicott's visit to Sapporo was meaningful. Further more I could obtain a positive feeling to establish bounds on correlations for nonhyperbolic maps in future. Another purpose of this project is to study asymptotic behavior of ergodic sums, in particuler, convergence to thenormal distributions.About this problem, Prof.M.Denker's visit gave a lot of contributions in solving it. In fact, by his advices I could have a confidenceof importance of my examples and I could establish an extended resultson the central limit theorem which are ajplicable to new nonhyperbolicphenomena. The paper [4] containing the results was submitted to Transaction of the American mathematical Society.(1998)In the second year project, I studied the rates of decay ofcorrelationsfor maps with indifferent perodic points. I could present an approach to estimating the rates by generalizing Liverani's random parturbations of Perron-Frobenius operators which goes back to Bunimovich-Sinai-Chernov's Markov approximation method. The result is contained in [5] which is a joint paper with M.Pollicott.
(1997)该项目的目的之一是为没有均匀双曲线的系统建立较大的偏差结果。关于这个问题,我解决了如下:对于具有一个冷漠周期性的分段c^1-bernoulli地图,在某些条件下建立的衍生品加权的预映射的较大偏差结果,更精确地是在上限的上限,上限为2级的2级大偏差原理<有限的集成>。为了解决这个问题,Pollicott教授对Sapporo的访问是有意义的。此外,我还可以获得积极的感觉,以建立未来非遗传图地图的相关性的界限。该项目的另一个目的是研究千古和在颗粒物中的渐近行为,在当时的正态分布中融合。实际上,通过他的建议,我可能对我的例子有信心,并且可以建立一个扩展的结果,该结果是中心限制定理,这对新的非遗传性苯丙烯瘤而言是可观的。包含结果的论文[4]已提交给美国数学学会的交易。(1998)在第二年项目中,我研究了与perodic perodic点无关的衰减相关图的发生率。我可以通过概括利弗拉尼(Liverani)的perron-frobenius操作员的随机偏置来介绍一种方法来估计费率,该方法可以追溯到Bunimovich-Sinai-Chernov的Markov近似方法。结果包含在[5]中,这是M.pollicott的联合纸。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Michiko Yuri(with M.Pollicott): "Dynamical Systems and Ergodic Theory" Cambridge University Press, 179 (1998)
Michiko Yuri(与 M.Pollicott):“动态系统和遍历理论”剑桥大学出版社,179(1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Michiko Yuri: "Thermodynamic Formalism for certain nonlyperbolic maps" Ergodic Theory and Dynamical Systems. (印刷中)発表予定.
Michiko Yuri:“某些非双曲映射的热力学形式主义”遍历理论和动力系统(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Pollicott R.Sharp &M.Yuri: "Large Deviations for maps with indifferent periodic points" Nonlinearity. 11. 1173-1184 (1998)
波利科特·R·夏普
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Pollicott, R. Sharp & M. Yuri: "Large Deviations for maps with indifferent Periodic points" Nonlinearity. (印刷中).
M. Pollicott、R. Sharp 和 M. Yuri:“具有无关周期性点的地图的大偏差”非线性(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Yuri & M. Pollicott: "Dynamical Systems and Ergodic Theory" Cambridge University Press, 179 (1998)
M·尤里
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YURI Michiko其他文献
YURI Michiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YURI Michiko', 18)}}的其他基金
Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
- 批准号:
21340018 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
- 批准号:
19540109 - 财政年份:2007
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Gibbsianness and phase transition in complex systems
复杂系统中的非吉布斯性和相变
- 批准号:
17540132 - 财政年份:2005
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical properties of complex systems with subexponetnatial instability and phase transition
具有次指数不稳定和相变的复杂系统的统计特性
- 批准号:
15540135 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
- 批准号:
13640133 - 财政年份:2001
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical properties of equilibrium states for complex systems
复杂系统平衡状态的统计特性
- 批准号:
11640134 - 财政年份:1999
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
- 批准号:
532937-2019 - 财政年份:2021
- 资助金额:
$ 1.34万 - 项目类别:
Postdoctoral Fellowships
Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
- 批准号:
532937-2019 - 财政年份:2020
- 资助金额:
$ 1.34万 - 项目类别:
Postdoctoral Fellowships
Selberg's Central Limit Theorem in Function Fields
函数域中的塞尔伯格中心极限定理
- 批准号:
532937-2019 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Postdoctoral Fellowships
Exploration of stochastic phenomena disobeying the central limit theorem and development of innovative stochastic processes in the structural engineering
结构工程中不服从中心极限定理的随机现象的探索和创新随机过程的发展
- 批准号:
18K04334 - 财政年份:2018
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Why the Normal Distribution in the Central Limit Theorem with Finite Variance
为什么方差有限的中心极限定理中的正态分布
- 批准号:
512572-2017 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
University Undergraduate Student Research Awards