Statistical properties of equilibrium states for complex systems

复杂系统平衡状态的统计特性

基本信息

  • 批准号:
    11640134
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

(1999)One of purposes of the project in 1999 is to clarify sufficient conditions for the existence of conformal measures for countable to one piecewise invertible Markov systems. About this problem, Prof.M.Denker gave valuable advices during his stay in Sapporo so that I could establish a new method for the construction of conformal measures which is based on the existence of a derived map T^* (Schweiger's jump transformation) which is uniformly expanding and guarantees a weak Holder-type property of the potential φ^* associated to φ. The result is contained in (3) which is a joint paper with M.Denker. Another purpose of the project is to establish bounds on decay of correlation functions for noninvertible maps with indifferent periodic points. I could obtained polynomial bounds by applying Liverani's method based on random parturbations of Perron-Frobenius operators and by estimating order of divergence of invariant densities near indifferent periodic points which was established in (1). The result is containaed in (4) which is a joint paper with M.Pollicott.(2000)In the second year project, I studied meromorphic properties of dynamical zeta functions for noninvertible maps with indifferent periodic points. I could clarify the meromorpic dmeain of the zeta functions by observing a good relation between the topological pressure for φ and the topological pressure associated to φ^* with respect to the jump transformation T^*. The result is contained in (5) which is a joint paper with M.Pollicott. Furthermore, I could improve the results on the rates of decay of correlations in (4) by clarifying the speed of uniform convergence of iterated Perron-Frobenius operators on compact sets excluding indifferent periodic points. The result is contained in (6).
(1999)1999年项目的目的之一是阐明可数到一分段可逆马尔可夫系统共形测度存在的充分条件。关于这个问题,M.Denker教授在札幌期间提出了宝贵的建议,使我能够建立一种新的构造共形测度的方法,这种方法是基于存在一个导出的映射T^*(Schweiger跳跃变换),它是一致膨胀的,并保证了与φ相关联的势φ^* 的弱Holder型性质。结果包含在(3)中,这是与M. Denker的联合论文。该项目的另一个目的是建立边界的衰减相关函数的不可逆映射与中立的周期点。应用基于Perron-Frobenius算子随机扰动的Liverani方法,并通过对文献[1]中建立的不变密度在不同周期点附近的发散阶的估计,得到了多项式的界。结果包含在与M. Pollicott的联合文章(4)中。(2000)在第二年的项目中,我研究了具有中性周期点的不可逆映射的动态zeta函数的亚纯性质。我可以通过观察φ的拓扑压力和与φ^* 相关的关于跳跃变换T^* 的拓扑压力之间的良好关系,来阐明zeta函数的亚纯dmeain。结果包含在(5)中,这是与M. Pollicott的联合论文。此外,我可以通过澄清迭代Perron-Frobenius算子在不包括无关周期点的紧集上的一致收敛速度来改进(4)中关于相关性衰减速率的结果。结果包含在(6)中。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Michiko Yuri: "Weak Gibbs measures for certain non-hyperbolic systems"Ergodic Theory and Dynamical Systems. Volume20. 1495-1518 (2000)
Michiko Yuri:“某些非双曲系统的弱吉布斯测度”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michiko Yuri: "Weak Gibbs measures for certain nonhyperbolic systems"Ergodic theory and Dynamical Systems. Volume20. 1495-1518 (2000)
Michiko Yuri:“某些非双曲系统的弱吉布斯测度”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Denker and M.Yuri: "A note on the construction of nonsingular Gibbs measures."Colloquium Mathematicum. 84/85. 377-383 (2000)
M.Denker 和 M.Yuri:“关于构造非奇异吉布斯测度的说明。”数学研讨会。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Michiko Yuri: "Thermodynamic formalism for certain nonhyperbolic maps."Ergodic Theory and Dynamicul Systems. Volume19. 1365-1378 (1999)
Michiko Yuri:“某些非双曲映射的热力学形式主义。”遍历理论和动力系统。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Pallicott and M.Yuri: "Regularity of solutions to the measurable Livsic equation"Transactions of the American Mathematical Society. Volume351 Namber2. 559-568 (1999)
M.Pallicott 和 M.Yuri:“可测 Livsic 方程解的正则性”美国数学会汇刊。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YURI Michiko其他文献

YURI Michiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YURI Michiko', 18)}}的其他基金

Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
  • 批准号:
    21340018
  • 财政年份:
    2009
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
  • 批准号:
    19540109
  • 财政年份:
    2007
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Gibbsianness and phase transition in complex systems
复杂系统中的非吉布斯性和相变
  • 批准号:
    17540132
  • 财政年份:
    2005
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of complex systems with subexponetnatial instability and phase transition
具有次指数不稳定和相变的复杂系统的统计特性
  • 批准号:
    15540135
  • 财政年份:
    2003
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
  • 批准号:
    13640133
  • 财政年份:
    2001
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
  • 批准号:
    09640289
  • 财政年份:
    1997
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Research Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
  • 批准号:
    2339326
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Continuing Grant
Landscape sensitivity to past and future climate: Solving the intermittency puzzle
景观对过去和未来气候的敏感性:解决间歇性难题
  • 批准号:
    2743977
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Synchronization and intermittency of the two point motion.
两点运动的同步性和间歇性。
  • 批准号:
    2751231
  • 财政年份:
    2022
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Studentship
Relaxation, Intermittency and Dissipation in a Collisionless Plasma
无碰撞等离子体中的弛豫、间歇和耗散
  • 批准号:
    2108834
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Mammalian behavioral discrimination and neural processing of naturalistic odor plumes based on intermittency
基于间歇性的哺乳动物行为辨别和自然气味羽流的神经处理
  • 批准号:
    10269918
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
RII Track-2 FEC: Aquatic Intermittency Effects on Microbiomes in Streams (AIMS)
RII Track-2 FEC:水生间歇性对溪流中微生物组的影响 (AIMS)
  • 批准号:
    2019603
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了