Non-Gibbsianness and phase transition in complex systems

复杂系统中的非吉布斯性和相变

基本信息

  • 批准号:
    17540132
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

The main purpose of this project is to clarify typical reasons for phase transition and non-Gibbsianness of equilibrium measures in the context of complex systems. For this purpose, we first established large deviation properties for countable to one Markov systems associated with weak Gibbs measures for non-H"older potentials. We clarified a class of functions in which we can describe free energy function associated to weak Gibbs measures in terms of topological pressure. We established the level-2 upper large deviaition inequality and clarified sufficient conditions for the upper bounds being strictly negative. Furthermore, we studied multifractal large deviation laws for non-hyperbolic systems exhibiting 'intermittency'. In particular, the law is established for countable to one piecewise conformal Markov systems, which are derived systems constructed over hyperbolic regions. We formulated different stages of 'indifferency ' associated with potentials of weak bounded variation, and … More relate new characterization of phase transitions to indifferent periodic points at various stages. We also succeeded to associate non-differentiability of the Hausdorff dimension of level sets with phase transitions for intermittent systems. These results were established in [1]. The second purpose of this project is to describe dissipative phenomena via invertible extensions of non-invertible non-hyperbolic systems. We restrict our attention to countable to one sofic systems and established an explicit topological description of spaces of their invertible extensions under the existence of their dual systems. We also give a topological notion of ' reversibility ' of the invertible extensions. Then we discuss when Rohlin's invertible extension of ergodic absolutely continuous invariant measures are absolutely continuous with respect to a natural physical measure on the spaces that we constructed. We could observe that different nature of observability between original non- invertible systems and their dual systems causes dissipative phenomena in their invertible extensions. Those results are obtained in [4]. The third purpose of this project is to introduce thermodynamic methods to study conformal measures for families of partially defined maps on compact metric spaces which is called a ' dynamical family '. In particular, we could develop some aspects of thermodynamic formalism for countable to one sofic systems. Those results will appear in a joint paper with M.Denker (Gottingen Univ.). Less
这个项目的主要目的是澄清在复杂系统的背景下,平衡措施的相变和非吉布斯的典型原因。为此,我们首先建立了非H“older势的可数到一马氏系统的弱Gibbs测度的大偏差性质。我们阐明了一类可以用拓扑压来描述弱Gibbs测度的自由能函数的函数。建立了二阶上大偏差不等式,并阐明了上界严格为负的充分条件.此外,我们还研究了非双曲型方程组的多重分形大偏差律。特别地,建立了可数到一分段共形马尔可夫系统,这是双曲区域上构造的导出系统的法律。我们制定了与弱有界变差势相关的“无差异”的不同阶段, ...更多信息 将相变的新特征与各个阶段的无关周期点联系起来。我们还成功地将水平集的Hausdorff维数的不可微性与间歇系统的相变联系起来。这些结果在[1]中得到了证实。这个项目的第二个目的是通过不可逆非双曲系统的可逆扩展来描述耗散现象。我们把注意力限制在可数到一个sofic系统,并建立了一个明确的拓扑描述的空间,其可逆扩张的存在下,其对偶系统。我们还给出了可逆扩张的“可逆性”的拓扑概念。然后讨论了遍历绝对连续不变测度的Rohlin可逆扩张在所构造的空间上关于自然物理测度绝对连续的条件。我们可以观察到,原不可逆系统与其对偶系统的可观测性不同,导致了其可逆扩张中的耗散现象。这些结果在[4]中得到。这个项目的第三个目的是引入热力学方法来研究紧致度量空间上的部分定义映射族的共形测度,这类映射族被称为“动力学族”。特别地,我们可以发展可数到一个sofic系统的热力学形式主义的某些方面。这些结果将出现在与M.Denker(哥廷根大学)的联合论文中。少

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Phase transition, Non-Gibbsianness and Subexponential Instability
相变、非吉布斯性和次指数不稳定性
Large Deviations for Countable to One Markov Systems
Non-Gibbsianness of SRB measures for the natural extension of Intermittent systems
间歇系统自然扩展的 SRB 测量的非吉布斯性
Nonequilibrium steady states arising from number theory
数论产生的非平衡稳态
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Sakaguchi;Y. Ohtsubo;Yoshio Ohtsubo;Y. Ohtsubo;大坪 義夫;大坪 義夫;Y. Ohtsubo;Y. Ohtsubo;Y. Ohtsubo;Michiko Yuri
  • 通讯作者:
    Michiko Yuri
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YURI Michiko其他文献

YURI Michiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YURI Michiko', 18)}}的其他基金

Statistical properties of nonstationary weak Gibbs states and analysis of dissipative phenomena for those invertible extensions
非平稳弱吉布斯态的统计特性和可逆外延的耗散现象分析
  • 批准号:
    21340018
  • 财政年份:
    2009
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
An analysis of dissipative phenomena and intermittency in complex systems via a generalized variational principle
通过广义变分原理分析复杂系统中的耗散现象和间歇性
  • 批准号:
    19540109
  • 财政年份:
    2007
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of complex systems with subexponetnatial instability and phase transition
具有次指数不稳定和相变的复杂系统的统计特性
  • 批准号:
    15540135
  • 财政年份:
    2003
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of weak Gibbs measures for complex systems with nonhyperbolic periodic orbits
非双曲周期轨道复杂系统弱吉布斯测度的统计特性
  • 批准号:
    13640133
  • 财政年份:
    2001
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical properties of equilibrium states for complex systems
复杂系统平衡状态的统计特性
  • 批准号:
    11640134
  • 财政年份:
    1999
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On statistical properties for nonlinear nonhyperbolic systems
非线性非双曲系统的统计特性
  • 批准号:
    09640289
  • 财政年份:
    1997
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Turbulence Intermittency for Cloud Physics (TITCHY)
云物理的湍流间歇性 (TITCHY)
  • 批准号:
    EP/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Research Grant
CAREER: Intermittency and Two-Fluid Transitions in Pulsed-Power-Driven Magnetized Turbulence
职业:脉冲功率驱动磁化湍流中的间歇性和二流体转变
  • 批准号:
    2339326
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Continuing Grant
Landscape sensitivity to past and future climate: Solving the intermittency puzzle
景观对过去和未来气候的敏感性:解决间歇性难题
  • 批准号:
    2743977
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Synchronization and intermittency of the two point motion.
两点运动的同步性和间歇性。
  • 批准号:
    2751231
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Studentship
Relaxation, Intermittency and Dissipation in a Collisionless Plasma
无碰撞等离子体中的弛豫、间歇和耗散
  • 批准号:
    2108834
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Mammalian behavioral discrimination and neural processing of naturalistic odor plumes based on intermittency
基于间歇性的哺乳动物行为辨别和自然气味羽流的神经处理
  • 批准号:
    10269918
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
RII Track-2 FEC: Aquatic Intermittency Effects on Microbiomes in Streams (AIMS)
RII Track-2 FEC:水生间歇性对溪流中微生物组的影响 (AIMS)
  • 批准号:
    2019603
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了