Analysis of fundamental properties of elastic equations

弹性方程基本性质分析

基本信息

  • 批准号:
    15540152
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

In this research project we aimed initially to know properties of solutions of the elastic equations and to clarify roots of those properties. And, using the clarification, we intended to study individual topics concerned with elastic waves.We have seen that the elastic wave equations are near the scalar-valued wave equation although they are one of kinds of hyperbolic systems, and that this is because of positivity and symmetry of the elastic operators. As one of main results concerning this, we have proved that the elastic operators can be expressed of product form of first order operators in the same way as the scalar-valued elliptic operators. This expression cannot be expected for systems of the general form.It is known that there exists the Rayleigh wave in the elastic equations, which does not occur in the scalar-valued equations. We have shown synthetically how this existence affects scattering theories and have constructed a general scattering theory of the Lax-Phillips type accounting the Rayleigh wave.Furthermore, we have studied individual topics in this theory, and have obtained a representation of the scattering kernel. This representation is a fundamental and useful formula to solve inverse scattering problems.A special result on the energy decay has been got also for the scalar-valued equation. Namely it is proved that the total energy does not decay necessarily if the dissipative term is added of non isotropy. This gives an interesting suggestion on behavior of the elastic waves.
在本研究项目中,我们最初的目的是了解弹性方程的解的性质,并澄清这些性质的根源。我们已经看到,虽然弹性波方程是一类双曲型方程组,但它与标值波方程很接近,这是因为弹性算子的正性和对称性。作为这方面的主要结果之一,我们证明了弹性算子可以用与标量值椭圆算子相同的方式表示为一阶算子的乘积形式。对于一般形式的系统,不能期望有这样的表达式。我们知道,在弹性方程中存在瑞利波,而在标量方程中不存在瑞利波。我们综合地说明了这种存在性对散射理论的影响,建立了一个考虑瑞利波的Lax-Phillips型散射理论,并对该理论中的个别问题进行了研究,得到了散射核的表示。该表示式是求解逆散射问题的一个基本而有用的公式,对于标量方程也得到了能量衰减的一个特殊结果。即证明了在加入各向异性耗散项后,总能量不一定衰减。这对弹性波的行为提出了一个有趣的建议。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy
具有空间各向异性耗散项的波动方程总能量不衰减
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川下美潮;川下和日子;曽我日出夫
  • 通讯作者:
    曽我日出夫
川下美潮, 中澤秀夫, 曽我日出夫: "Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy"Nagoya Math.J.. ( 掲載予定レフェリー済).
Yoshio Kawashita、Hideo Nakazawa、Hideo Soga:“具有空间各向异性耗散项的波动方程总能量的非衰变”Nagoya Math.J.(参考待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SOGA Hideo其他文献

SOGA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SOGA Hideo', 18)}}的其他基金

Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
  • 批准号:
    21540161
  • 财政年份:
    2009
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
  • 批准号:
    19540160
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
  • 批准号:
    17540145
  • 财政年份:
    2005
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
  • 批准号:
    13640150
  • 财政年份:
    2001
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of special waves in elastic bodies
弹性体中的特殊波分析
  • 批准号:
    10640151
  • 财政年份:
    1998
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
  • 批准号:
    61540077
  • 财政年份:
    1986
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Research Grant
Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2883083
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
  • 批准号:
    2246908
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
  • 批准号:
    2206218
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Continuing Grant
Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2885401
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了