Analysis of special waves in elastic bodies

弹性体中的特殊波分析

基本信息

  • 批准号:
    10640151
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

This research project is concerned with elastic waves, and the main purposes set initially werea) to obtain concrete representations of the solutions,b) to study scattering of the waves near boundaries,c) to study inverse problems concerning the waves near boundaries,d) to analyze the waves in the case of the total reflection.We have accomplished these almost as was expected. Let us summarize the results obtained in this project.About a) and d) , we have got an asymptotic expansion of the wave reflected totally, which is one of the mainest results. This expansion is much expected to be useful in analyzing the phenomenon of the scattering and the inverse problems of the elastic waves. Furthermore, we have obtained also another kind of concrete representation of the waves.About b) , we have shown that the Rayleigh wave, which has been much interested since a long time ago, behaves individually and can be extracted in the Lax-Phillips scattering theory : We have made a formulation of that theory for the Rayleigh wave, which is useful for the inverse problems. Moreover, we have investigated precisely decay of this wave expressing the behavior at infinity.About c) , we have got a new methods of reconstruction of coefficients in differential equations applicable to the inverse problems. And we have obtained a new numerical method of finite elements for the approximate solutions. These seem to be very useful to solve the inverse problems, but we cannot finish solving concretely some of the inverse problems.
本研究计划是关于弹性波的,最初的主要目的是:a)获得解的具体表示,B)研究波在边界附近的散射,c)研究关于边界附近波的反问题,d)分析全反射情况下的波,我们几乎按预期完成了这些工作。我们总结一下本项目的结果,对于a)和d),我们得到了全反射波的渐近展开式,这是最主要的结果之一。这一展开式在分析弹性波的散射现象和反问题中具有重要的应用价值。关于B),我们证明了瑞利波的独立性,并可以从Lax-Phillips散射理论中提取出来:我们给出了瑞利波的理论公式,这对反问题是有用的。此外,我们还精确地研究了这种波在无穷远处的衰减,对于c),我们得到了一种适用于反问题的重构微分方程系数的新方法。并给出了一种新的有限元数值方法。这些方法对求解反问题似乎很有用,但有些反问题我们还不能具体地解决。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SOGA Hideo其他文献

SOGA Hideo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SOGA Hideo', 18)}}的其他基金

Development of representation of elastic waves and investigation of their fundamental properties
弹性波表示的发展及其基本特性的研究
  • 批准号:
    21540161
  • 财政年份:
    2009
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical Analysis for Inverse Scattering Problems of Elastic Waves
弹性波逆散射问题的数学分析
  • 批准号:
    19540160
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical models of elastic waves and their inverse problems
弹性波数学模型及其反问题
  • 批准号:
    17540145
  • 财政年份:
    2005
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of fundamental properties of elastic equations
弹性方程基本性质分析
  • 批准号:
    15540152
  • 财政年份:
    2003
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of scattering waves by perturbed portions
扰动部分的散射波分析
  • 批准号:
    13640150
  • 财政年份:
    2001
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse problems of the scattering by obstacles
障碍物散射反问题
  • 批准号:
    61540077
  • 财政年份:
    1986
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Research Grant
Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2883083
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Conference: Recent Developments and Future Directions in Nonlinear Dispersive and Wave Equations
会议:非线性色散和波动方程的最新进展和未来方向
  • 批准号:
    2328459
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Probabilistic Aspects of Dispersive and Wave Equations
色散方程和波动方程的概率方面
  • 批准号:
    2246908
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Stability, Uniqueness, and Existence for Solutions of Hyperbolic Conservation Laws and Nonlinear Wave Equations
双曲守恒定律和非线性波动方程解的稳定性、唯一性和存在性
  • 批准号:
    2306258
  • 财政年份:
    2023
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
  • 批准号:
    2206218
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Continuing Grant
Random dispersive and wave equations
随机色散方程和波动方程
  • 批准号:
    2885401
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Studentship
Mathematical and numerical analysis for quantum wave equations: from theory to applications
量子波动方程的数学和数值分析:从理论到应用
  • 批准号:
    RGPIN-2018-05321
  • 财政年份:
    2022
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical Methods for Wave Equations in Time and Frequency Domain
时域和频域波动方程的数值方法
  • 批准号:
    2210286
  • 财政年份:
    2021
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了