Development of novel multiple comparison method and decision tree method using resampling techniques and its applications to medical and pharmaceutical data.
使用重采样技术开发新型多重比较方法和决策树方法及其在医学和制药数据中的应用。
基本信息
- 批准号:15590042
- 负责人:
- 金额:$ 1.15万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Last fiscal year, we developed novel more applicable algorithm of statistical multiple comparison, and the power of test of our method was revealed to be equal to or better than the traditional less applicable methods, such as Dunnett's test and Tukey's test. The results of our study were published in the Journal of Computer Aided Chemistry(vol.4, pp.27-34 (2003)). In this year, we tried to apply a resampling method for obtaining the significance of predictable variables used in decision trees, and this approach was succeeded. The main achievements in this year are as described below.1) A resampling technique, which is similar to bootstrap method, was adopted for the decision tree method in order to find significant predictable variables (attributes) : it was impossibly difficult to find the significance of attributes in the case of decision tree methods. Our technique is not only able to find such significance but also visualize the level of significance using some 3D graphs. This met … More hod was applied to the prediction of the prognosis of brain tumor patients and satisfied results were obtained. A part of our results was reported at the symposium at the Symposia of the 124th Annual Meeting of the Pharmaceutical Society of Japan (Osaka) organized by the head investigator (Tatsuya TAKAGI) of this research project and Kozo TAKAYAMA, and at the Conference of Chemometrics and Bioinformatics in Asia 2004 (Shanghai) by the head investigator (TAKAGI) of this research project as an invited speaker. After the conference, this report was published in the Journal of Computer Aided Chemistry (vol.5, pp.35-46 (2004)).2) Based on the results of the studies in the last fiscal year, we tried to write fast and parallel software of our novel multiple comparison method using resampling method and publish on WWW pages by CGI. This software was already published on the WWW page, http : //www.gen-info.osaka-u.ac.jp/testdocs/tomocom/, with the manual of this software, http : //www.gen-info.osaka-u.ac.jp/testdocs/tomocom/tazyu.html, and the simple explanation of our algorithm, http : //www.phs.osaka-u.ac.jp /homepage/b015/research1.html. This software has been being used frequently. Less
上个财政年度,我们开发了新的更适用的统计多重比较算法,我们的方法的检验能力等于或优于传统的不太适用的方法,如Dunnett检验和Tukey检验。我们的研究结果发表在《计算机辅助化学杂志》(第4卷,第27-34页(2003))上。在这一年里,我们尝试应用重采样方法来获得决策树中使用的可预测变量的重要性,并成功地使用了这种方法。1)对决策树方法采用了类似于Bootstrap方法的重采样技术,以便找到显著的可预测变量(属性):在决策树方法的情况下,找出属性的重要性是不可能的。我们的技术不仅能够找到这样的重要性,而且还可以使用一些3D图形来可视化重要性的级别。这遇到了…将HOD更多地应用于脑肿瘤患者的预后预测,取得了满意的结果。我们的部分成果被报告在本研究项目的首席研究员Tatsuya Takagi和Kozo Takayama组织的日本药学会(大阪)第124届年会的研讨会上,以及本研究项目的首席研究员(Takagi)作为特邀演讲人在2004年亚洲化学计量学和生物信息学会议(上海)上报告。会议结束后,本文发表在《计算机辅助化学杂志》(第5卷,第35-46页(2004))上。2)根据上一财年的研究结果,我们尝试用重采样法编写新的多重比较法的快速并行软件,并通过CGI在WWW页面上发布。该软件已经发布在万维网网页http://www.gen-info.osaka-u.ac.jp/testdocs/tomocom/,上,该软件的手册http://www.gen-info.osaka-u.ac.jp/testdocs/tomocom/tazyu.html,和我们的算法的简单解释http://www.phs.osaka-U.S.ac.jp/HomePage/b015/Research 1.html。这款软件一直被频繁使用。较少
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
統計解析の基礎 検定・推定・多重比較(実験データの解釈のために)
统计分析基础:测试、估计、多重比较(用于解释实验数据)
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tatsuya TAKAGI;et al.;高木 達也
- 通讯作者:高木 達也
A New Procedure of Validation for Binary Tree Models using Resampling Technique
使用重采样技术验证二叉树模型的新程序
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tatsuya TAKAGI;Kousuke OKAMOTO;Masahiko YOKOTA Teruo YASUNAGA
- 通讯作者:Masahiko YOKOTA Teruo YASUNAGA
Introduction of Multiple Comparison Method
多重比较法介绍
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:高木 達也;Tatsuya TAKAGI
- 通讯作者:Tatsuya TAKAGI
A New Procedure of Validation for Binary Tree Models using Resampling Technique.
使用重采样技术验证二叉树模型的新程序。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tatsuya TAKAGI;et al.
- 通讯作者:et al.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAGI Tatsuya其他文献
How Beneficial or Threatening is Artificial Intelligence?
人工智能有多大益处或威胁?
- DOI:
10.1273/cbij.23.7 - 发表时间:
2023 - 期刊:
- 影响因子:0.3
- 作者:
Misaki Shinoda;Nobuyoshi Morita;Kosaku Tanaka;III;Yoshimitsu Hashimoto;Shintaro Ban;Osamu Tamura;TAKAGI Tatsuya - 通讯作者:
TAKAGI Tatsuya
pHを蛍光スイッチとするトリフェニルメタン系色素の合成
以pH为荧光开关的三苯甲烷染料的合成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Misaki Shinoda;Nobuyoshi Morita;Kosaku Tanaka;III;Yoshimitsu Hashimoto;Shintaro Ban;Osamu Tamura;TAKAGI Tatsuya;西村まどか,上田梨奈,中村友香,小幡徹,谷岡卓,神野伸一郎 - 通讯作者:
西村まどか,上田梨奈,中村友香,小幡徹,谷岡卓,神野伸一郎
TAKAGI Tatsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAGI Tatsuya', 18)}}的其他基金
Development and Applications of Nonlinear Dimension Reduction with Weak Supervisiors
弱监督非线性降维的发展与应用
- 批准号:
17K08235 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling for Prediction of Serious Adverse Events Probabilities of Drug Candidates
候选药物严重不良事件概率预测的建模
- 批准号:
15KT0017 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Adverse Events ofDrugs usingData Mining
基于数据挖掘的药品不良事件研究
- 批准号:
21590157 - 财政年份:2009
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Factor Analysis using HEP Neural Network and Its Application to Pharmaceutical and Medical Data
使用 HEP 神经网络进行非线性因子分析及其在制药和医疗数据中的应用
- 批准号:
13672253 - 财政年份:2001
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-linear Analysis of Medical and Pharmaceutical Data using Neural Network and Generalized Additive Model
使用神经网络和广义加性模型对医疗和制药数据进行非线性分析
- 批准号:
11672140 - 财政年份:1999
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of Artificial Neural Networks and Its Applications to QSARs.
人工神经网络的改进及其在 QSAR 中的应用。
- 批准号:
08672476 - 财政年份:1996
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
New methods for multiple comparison procedures
多重比较程序的新方法
- 批准号:
RGPIN-2018-05119 - 财政年份:2022
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
New methods for multiple comparison procedures
多重比较程序的新方法
- 批准号:
RGPIN-2018-05119 - 财政年份:2021
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
New methods for multiple comparison procedures
多重比较程序的新方法
- 批准号:
RGPIN-2018-05119 - 财政年份:2020
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
New methods for multiple comparison procedures
多重比较程序的新方法
- 批准号:
RGPIN-2018-05119 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
Constrained Network-Based Multiple Comparison Correction
基于约束网络的多重比较校正
- 批准号:
10212948 - 财政年份:2019
- 资助金额:
$ 1.15万 - 项目类别:
The progressive theory of multiple comparison procedures
多重比较程序的渐进理论
- 批准号:
18K11204 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New methods for multiple comparison procedures
多重比较程序的新方法
- 批准号:
RGPIN-2018-05119 - 财政年份:2018
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
Topics in multiple comparison procedures and variable selection
多重比较过程和变量选择的主题
- 批准号:
261301-2013 - 财政年份:2017
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
Topics in multiple comparison procedures and variable selection
多重比较过程和变量选择的主题
- 批准号:
261301-2013 - 财政年份:2016
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual
Topics in multiple comparison procedures and variable selection
多重比较过程和变量选择的主题
- 批准号:
261301-2013 - 财政年份:2015
- 资助金额:
$ 1.15万 - 项目类别:
Discovery Grants Program - Individual