Non-linear Analysis of Medical and Pharmaceutical Data using Neural Network and Generalized Additive Model
使用神经网络和广义加性模型对医疗和制药数据进行非线性分析
基本信息
- 批准号:11672140
- 负责人:
- 金额:$ 0.83万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have tried to adopt the several nonparametric data analysis methods, such as GAM, MARS, decision tree, MART, hierarchical artificial neural networks (HANN), and Livingstone type artificial neural networks (LANN), to the data in the field of medical and pharmaceutical sciences. And the reasonable results of regression and principal component analyses were obtained.First, we compared the two nonparametric nonlinear regression methods, MARS and MART, which were developed by Freedman et al., using ideal artificial data. MARS showed a surprisingly good fitting and prediction performances ; MART also showed quite good performances. And the results indicate that MART is a robust data mining method. Thus, we resulted that the MARS should be adopted for the data containing little noise and that the MART should be adopted for the data analyses which can be affected by noise.Then, we applied these methods including the GAM and the HANN to some epidemiological data sets. For example, the MARS a … More nd the MART methods were applied to the pharmacoepidemiological study of estrogen, which might be related to the onset of endometrial cancer. The results show that the active form of estrogen is related to the onset of the cancer. Although we could get a certain information of the pharmacoepidemiological study of estrogen, it was not so easy to test the significance of each prediction variables used in such nonparametric models. Thus, we introduced the extended shift test method, which was revised by our group, in order to test the significance of prediction variables. These methods were also applied to the clinical epidemiological study on the relation between onset of esophagus cancer and alcohol consumption. We confirmed the possibility that the alcohol consumption affect the esophagus cancer.In addition, we applied the LANN to the nonlinear principal component analyses of Gas-Liquid chromatographic retention data. The clearer classified result than the one obtained by linear PCA method could be obtained. Less
我们尝试采用GAM、MARS、决策树、MART、分层人工神经网络(HANN)、Livingstone类型人工神经网络(LANN)等几种非参数数据分析方法对医学和制药领域的数据进行分析。首先,利用理想的人工数据,对Freedman等人提出的两种非参数非线性回归方法MARS和MART进行了比较。玛氏的拟合和预测表现出人意料地好;马特也表现得相当好。结果表明,MART是一种稳健的数据挖掘方法。因此,对于噪声含量较小的数据应采用MARS方法,对可能受噪声影响的数据分析应采用MART方法,然后将GAM和HANN等方法应用于一些流行病学数据集。例如,火星是一种…更多地将MART方法应用于雌激素的药物流行病学研究,认为雌激素可能与子宫内膜癌的发生有关。结果表明,雌激素的活性形式与癌症的发生有关。虽然我们可以获得雌激素的药物流行病学研究的一定信息,但要检验在这种非参数模型中使用的每个预测变量的显著性并不容易。因此,我们引入了本课题组修订的扩展移位检验法,以检验预测变量的显著性。这些方法也被应用于食道癌发病与饮酒关系的临床流行病学研究。证实了饮酒影响食道癌的可能性,并将人工神经网络应用于气-液色谱保留数据的非线性主成分分析。与线性主成分分析方法相比,可以得到更清晰的分类结果。较少
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kurokawa K.,Takagi T.,Yasunaga T.: "The Approach for Bacterial Phenotype Representation by using Bacterial Whole Genomes"Proceedings of International Conference of Science of Systematic Biology. 1. 173-178 (2000)
Kurokawa K.,Takagi T.,Yasunaga T.:“使用细菌全基因组表示细菌表型的方法”国际系统生物学科学会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.V.Afonin et al.: "Specific intermolecular interactions C-H-N in heteroaryl vinyl ethers and hetero aryl rinyl sulfides studied by 'H, C^<13>, and N^<15> NMR sectroscopies…・"Can. J. Chem.. 77. 416-424 (1999)
A.V.Afonin 等人:“通过 H、C^<13> 和 N^<15> NMR 显微镜研究杂芳基乙烯基醚和杂芳基环硫醚中的特定分子间相互作用 C-H-N……”Can. J. Chem.. 77 . 416-424 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kurokawa K., Takagi T., Yasunaga T.: "The Approach for Bacterial Phenotype Representation by using Bacterial Whole Genomes."Proceedings of International Conference of Science of Systematic Biology. vol.1. 173-178 (2000)
Kurokawa K.、Takagi T.、Yasunaga T.:“使用细菌全基因组表示细菌表型的方法”。国际系统生物学科学会议论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAGI Tatsuya其他文献
How Beneficial or Threatening is Artificial Intelligence?
人工智能有多大益处或威胁?
- DOI:
10.1273/cbij.23.7 - 发表时间:
2023 - 期刊:
- 影响因子:0.3
- 作者:
Misaki Shinoda;Nobuyoshi Morita;Kosaku Tanaka;III;Yoshimitsu Hashimoto;Shintaro Ban;Osamu Tamura;TAKAGI Tatsuya - 通讯作者:
TAKAGI Tatsuya
pHを蛍光スイッチとするトリフェニルメタン系色素の合成
以pH为荧光开关的三苯甲烷染料的合成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Misaki Shinoda;Nobuyoshi Morita;Kosaku Tanaka;III;Yoshimitsu Hashimoto;Shintaro Ban;Osamu Tamura;TAKAGI Tatsuya;西村まどか,上田梨奈,中村友香,小幡徹,谷岡卓,神野伸一郎 - 通讯作者:
西村まどか,上田梨奈,中村友香,小幡徹,谷岡卓,神野伸一郎
TAKAGI Tatsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAGI Tatsuya', 18)}}的其他基金
Development and Applications of Nonlinear Dimension Reduction with Weak Supervisiors
弱监督非线性降维的发展与应用
- 批准号:
17K08235 - 财政年份:2017
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling for Prediction of Serious Adverse Events Probabilities of Drug Candidates
候选药物严重不良事件概率预测的建模
- 批准号:
15KT0017 - 财政年份:2015
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Adverse Events ofDrugs usingData Mining
基于数据挖掘的药品不良事件研究
- 批准号:
21590157 - 财政年份:2009
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of novel multiple comparison method and decision tree method using resampling techniques and its applications to medical and pharmaceutical data.
使用重采样技术开发新型多重比较方法和决策树方法及其在医学和制药数据中的应用。
- 批准号:
15590042 - 财政年份:2003
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear Factor Analysis using HEP Neural Network and Its Application to Pharmaceutical and Medical Data
使用 HEP 神经网络进行非线性因子分析及其在制药和医疗数据中的应用
- 批准号:
13672253 - 财政年份:2001
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of Artificial Neural Networks and Its Applications to QSARs.
人工神经网络的改进及其在 QSAR 中的应用。
- 批准号:
08672476 - 财政年份:1996
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Nonparametric regression on implicit manifold of high dimensional point cloud
高维点云隐式流形的非参数回归
- 批准号:
EP/W021595/1 - 财政年份:2022
- 资助金额:
$ 0.83万 - 项目类别:
Research Grant
Unifying Nonparametric Regression and Optimal Design
统一非参数回归和优化设计
- 批准号:
RGPIN-2016-04704 - 财政年份:2021
- 资助金额:
$ 0.83万 - 项目类别:
Discovery Grants Program - Individual
Unifying Nonparametric Regression and Optimal Design
统一非参数回归和优化设计
- 批准号:
RGPIN-2016-04704 - 财政年份:2020
- 资助金额:
$ 0.83万 - 项目类别:
Discovery Grants Program - Individual
Unifying Nonparametric Regression and Optimal Design
统一非参数回归和优化设计
- 批准号:
RGPIN-2016-04704 - 财政年份:2019
- 资助金额:
$ 0.83万 - 项目类别:
Discovery Grants Program - Individual
Unifying Nonparametric Regression and Optimal Design
统一非参数回归和优化设计
- 批准号:
RGPIN-2016-04704 - 财政年份:2018
- 资助金额:
$ 0.83万 - 项目类别:
Discovery Grants Program - Individual
Developments of nonparametric regression
非参数回归的发展
- 批准号:
18K18011 - 财政年份:2018
- 资助金额:
$ 0.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unifying Nonparametric Regression and Optimal Design
统一非参数回归和优化设计
- 批准号:
RGPIN-2016-04704 - 财政年份:2017
- 资助金额:
$ 0.83万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Honest Inference and Efficiency Bounds for Nonparametric Regression and Approximate Moment Condition Models
协作研究:非参数回归和近似矩条件模型的诚实推理和效率界限
- 批准号:
1628878 - 财政年份:2016
- 资助金额:
$ 0.83万 - 项目类别:
Standard Grant
Unifying Nonparametric Regression and Optimal Design
统一非参数回归和优化设计
- 批准号:
RGPIN-2016-04704 - 财政年份:2016
- 资助金额:
$ 0.83万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Honest Inference and Efficiency Bounds for Nonparametric Regression and Approximate Moment Condition Models
协作研究:非参数回归和近似矩条件模型的诚实推理和效率界限
- 批准号:
1628939 - 财政年份:2016
- 资助金额:
$ 0.83万 - 项目类别:
Standard Grant