Nonlinear Factor Analysis using HEP Neural Network and Its Application to Pharmaceutical and Medical Data
使用 HEP 神经网络进行非线性因子分析及其在制药和医疗数据中的应用
基本信息
- 批准号:13672253
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We improved the algorithm for nonlinear factor analysis using Hebbian learning method proposed by Oja et al in order to carry out independent component analysis, and wrote a program for it. This method, which is completely different from well-known error backpropagation learning method, enables us to carry out independent component analysis more effectively. Although the learning method is based on the Oja's method that uses only one activation function, we use several activation functions as follws:Wj(t+1)=Wj(t)+Exfj{x'(t)Wj(t)}diag{sign(cj(t))}In addition, weight coefficients at the time when the variance of output values is maximized are adopted. The throughout algorithm is as folloes:(1) Principal component scores of raw data are used as input data.(2) The data are standardized.(3) Weight coefficients, Wj, are calculated, and are replaced by W(t) obtained by the equation, W'(t)=W(t)/||W(t)||.(4) cj(t) are calculated using the equation above.(5) The ratio of the cases, r, of which the signs of cj calculated using the j th activation function are different with each other after t times learnings is calculated. Then, using the ratios, principal component scores, z, are calculated.(6) After calculating the variances of z, t(max), which indicates the maximum value of t, is obtained.(7) The procedure, (3) - (6), is iterated untill the value is converged.Using the coded program, we carried out the profiling analysis of confiscated stimulant drugs by GC-MS data. Comparing the six methods for the profiling, PCA, CATPCA, MDS, SOM, HNN, and HEP, only HEP gave a resonable map. Although other five methods could not calssify the four samples which were synthesized by four known procedures, HEP could distinguish the known samples. This indicates that HEP method can give appropriate results as a sort of factor analysis.
为了进行独立成分分析,我们利用Oja等人提出的Hebbian学习方法对非线性因素分析算法进行了改进,并编写了相应的程序。这种方法与众所周知的误差反向传播学习方法完全不同,它使我们能够更有效地进行独立分量分析。虽然该学习方法是基于只使用一个激活函数的Oja方法,但我们使用多个激活函数作为follws:Wj(t+1)=Wj(t)+Exfj{x‘(t)Wj(t)}diag{sign(cj(t))}In加法,采用了输出值的方差最大时的权重系数。通过率算法如下:(1)以原始数据的主成分分数作为输入数据。(2)对数据进行标准化。(3)计算权系数Wj,并将其替换为由公式W‘(T)=W(T)/||W(T)||得到的W(T)。(4)使用上面的公式计算Cj(T)。(5)计算t次学习后第j次激活函数计算的Cj符号彼此不同的情况的比率r。(6)计算z的方差,得到t的最大值t(Max)。(7)迭代程序(3)-(6),直到收敛为止。利用编码程序,利用GC-MS数据对没收的兴奋剂进行了轮廓分析。比较PCA、CATPCA、MDS、SOM、HNN和HEP这六种方法,只有HEP给出了合理的MAP。虽然其他五种方法不能对已知的四种方法合成的四个样品进行分级,但HEP可以区分已知的样品。这表明HEP方法作为一种因子分析方法可以给出合适的结果。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tatsuya TAKAGI: "Application of Computer Intensive Statistical Method to Chemistry and Pharmaceutical Sciences"Chemical Industry. Vol.53, No.4. 298-302 (2002)
Tatsuya TAKAGI:“计算机密集统计方法在化学和制药科学中的应用”化学工业。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TAKAGI Tatsuya其他文献
How Beneficial or Threatening is Artificial Intelligence?
人工智能有多大益处或威胁?
- DOI:
10.1273/cbij.23.7 - 发表时间:
2023 - 期刊:
- 影响因子:0.3
- 作者:
Misaki Shinoda;Nobuyoshi Morita;Kosaku Tanaka;III;Yoshimitsu Hashimoto;Shintaro Ban;Osamu Tamura;TAKAGI Tatsuya - 通讯作者:
TAKAGI Tatsuya
pHを蛍光スイッチとするトリフェニルメタン系色素の合成
以pH为荧光开关的三苯甲烷染料的合成
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Misaki Shinoda;Nobuyoshi Morita;Kosaku Tanaka;III;Yoshimitsu Hashimoto;Shintaro Ban;Osamu Tamura;TAKAGI Tatsuya;西村まどか,上田梨奈,中村友香,小幡徹,谷岡卓,神野伸一郎 - 通讯作者:
西村まどか,上田梨奈,中村友香,小幡徹,谷岡卓,神野伸一郎
TAKAGI Tatsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TAKAGI Tatsuya', 18)}}的其他基金
Development and Applications of Nonlinear Dimension Reduction with Weak Supervisiors
弱监督非线性降维的发展与应用
- 批准号:
17K08235 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Modeling for Prediction of Serious Adverse Events Probabilities of Drug Candidates
候选药物严重不良事件概率预测的建模
- 批准号:
15KT0017 - 财政年份:2015
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on Adverse Events ofDrugs usingData Mining
基于数据挖掘的药品不良事件研究
- 批准号:
21590157 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of novel multiple comparison method and decision tree method using resampling techniques and its applications to medical and pharmaceutical data.
使用重采样技术开发新型多重比较方法和决策树方法及其在医学和制药数据中的应用。
- 批准号:
15590042 - 财政年份:2003
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-linear Analysis of Medical and Pharmaceutical Data using Neural Network and Generalized Additive Model
使用神经网络和广义加性模型对医疗和制药数据进行非线性分析
- 批准号:
11672140 - 财政年份:1999
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improvement of Artificial Neural Networks and Its Applications to QSARs.
人工神经网络的改进及其在 QSAR 中的应用。
- 批准号:
08672476 - 财政年份:1996
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152704 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
- 批准号:
535113-2019 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Establishment of molecular design guidelines for enzyme mutants by principal component analysis aiming at improving enzyme electrochemical reaction
通过主成分分析建立酶突变体分子设计指南,旨在改善酶电化学反应
- 批准号:
21K14782 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Orthonormal principal component analysis for categorical data and its applications
分类数据正交主成分分析的发展及其应用
- 批准号:
20K03303 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
- 批准号:
535113-2019 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Studentship Programs
Kernel principal component analysis in high dimension, low sample size and its applications
高维、小样本核主成分分析及其应用
- 批准号:
19J10175 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
- 批准号:
535113-2019 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




