Hardware Realization of Neural Oscillator with Learning Capability
具有学习能力的神经振荡器的硬件实现
基本信息
- 批准号:16500142
- 负责人:
- 金额:$ 0.9万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, I propose a learning scheme for pulse coupled oscillators using the simultaneous perturbation optimization method and its hardware implementation. It was difficult and complicated for usual optimization method to find proper parameter values of the pulse coupled oscillator, since the oscillator is a kind of recurrent neural network. The simultaneous perturbation method gives a simple solution. Moreover, this approach is suitable for hardware realization. From this point of view, I proposed and fabricated the hardware pulse coupled oscillator and recurrent neural network with learning ability via the simultaneous perturbation method.First of all, I confirm feasibility of the proposed pulse coupled oscillator with learning capability through simulation by C language and MatLab. The pulse coupled oscillator can generate pulse train with desired interval through leaning process.Hardware realization of neural networks is an interesting issue. Mainly there are two approache … More s ; digital realization and analog one. As the former approach, field programmable gate array(FPGA) is useful target. I designed the pulse coupled oscillator with learning capability by VHDL. Then, design result is configured on FPGA. I verified the operation of the FPGA pulse coupled oscillator system with learning ability. Proper pulse train is obtained.The second approach is analog realization. Then, field programmable analog array(FPAA) is adopted to implement the oscillator. Analog circuit design of the system is carried out. The circuit operation is confirmed by a circuit simulator. The system could realize the pulse coupled oscillator with learning capability via the simultaneous perturbation method. Next, the design is configured to FPAA. The circuit realized the pulse coupled oscillator. Interval of generated pulse train varied depending on parameters contained in the pulse coupled oscillator.Moreover, some recurrent neural networks with learning capability were realized by FPGA using the simultaneous perturbation method. Hopfield network and bidirectional associative memory are typical examples of the recurrent networks. Usually, it was difficult to realize these hardware recurrent neural network systems with learning capability. However, I implemented the Hopfield neural network system and bidirectional neural network system with learning ability using the simultaneous perturbation method. I showed some application of these systems.As a result, I could confirm a validity and feasibility of the pulse coupled oscillator with learning capability via the simultaneous perturbation method. These systems were fabricated and tested the operation of these systems. Less
在本研究中,我提出了一个脉冲耦合振荡器的学习方案,使用同时扰动优化方法及其硬件实现。由于脉冲耦合振荡器是一种递归神经网络,通常的优化方法很难找到合适的参数值。同时摄动法给出了一个简单的解决方案。该方法适合于硬件实现。从这个角度出发,本文提出并实现了硬件脉冲耦合振荡器和具有学习能力的递归神经网络的同时微扰方法。首先,通过C语言和MatLab仿真验证了本文提出的具有学习能力的脉冲耦合振荡器的可行性。脉冲耦合振荡器可以通过学习过程产生具有所需间隔的脉冲序列,神经网络的硬件实现是一个有趣的问题。主要有两种方法 ...更多信息 数字实现和模拟实现。现场可编程门阵列(FPGA)作为前一种方法是很有用的目标。用VHDL语言设计了具有学习能力的脉冲耦合振荡器。然后,将设计结果在FPGA上进行配置。验证了FPGA脉冲耦合振荡器系统的运行具有学习能力。第二种方法是模拟实现。然后采用现场可编程模拟阵列(FPAA)来实现振荡器。进行了系统的模拟电路设计。通过电路模拟器确认电路操作。该系统通过同时微扰法实现了具有学习能力的脉冲耦合振荡器。接下来,将设计配置为FPAA。该电路实现了脉冲耦合振荡器。脉冲耦合振荡器产生的脉冲串的间隔随振荡器参数的变化而变化,并采用同时扰动法在FPGA上实现了具有学习能力的递归神经网络。Hopfield网络和双向联想记忆是递归网络的典型例子。通常,这些具有学习能力的递归神经网络系统很难用硬件实现。然而,我实现了Hopfield神经网络系统和双向神经网络系统的学习能力,使用同时扰动方法。通过对这些系统的应用,验证了用同时微扰法设计具有学习能力的脉冲耦合振荡器的有效性和可行性。制造这些系统并测试这些系统的操作。少
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Using Simultaneous Perturbation for Pulse Coupled Oscillators
学习使用脉冲耦合振荡器的同步扰动
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yutaka Maeda;Makito Nakatsuka
- 通讯作者:Makito Nakatsuka
Bidirectional associative memory with learning capability using simultaneous perturbation
- DOI:10.1016/j.neucom.2005.02.021
- 发表时间:2005-12
- 期刊:
- 影响因子:6
- 作者:Y. Maeda;M. Wakamura
- 通讯作者:Y. Maeda;M. Wakamura
Simultaneous perturbation learning rule for recurrent neural networks and its FPGA implementation
- DOI:10.1109/tnn.2005.852237
- 发表时间:2005-11
- 期刊:
- 影响因子:0
- 作者:Y. Maeda;M. Wakamura
- 通讯作者:Y. Maeda;M. Wakamura
FPGA Implementation of Pulse Coupled Oscillator
脉冲耦合振荡器的 FPGA 实现
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Yutaka Maeda;Makito Nakatsuka
- 通讯作者:Makito Nakatsuka
Learning Using Simulataneous Perturbation for Pulse Coupled Oscillators
使用脉冲耦合振荡器的同步扰动进行学习
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Yutaka Maeda;Makito Nakatsuka
- 通讯作者:Makito Nakatsuka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MAEDA Yutaka其他文献
MAEDA Yutaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MAEDA Yutaka', 18)}}的其他基金
Construction of methods for controlling near-infrared photoluminescence properties of carbon nanotubes
碳纳米管近红外光致发光特性控制方法的构建
- 批准号:
17H02735 - 财政年份:2017
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Creation of innovative near-infrared photoluminescence probe based on nanocarbons by chemical functionalization
通过化学功能化创建基于纳米碳的创新近红外光致发光探针
- 批准号:
26286012 - 财政年份:2014
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High dimensional neural networks using simulations perturbation learning rule and their hardware implementation
使用模拟扰动学习规则的高维神经网络及其硬件实现
- 批准号:
23500290 - 财政年份:2011
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of the chemical functionalization of carbon nanotubes and control of its property
碳纳米管化学功能化的发展及其性能控制
- 批准号:
23750035 - 财政年份:2011
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Hardware Implementation of Neural Networks with Learning Capability Using Simultaneous Perturbation
使用同时扰动的具有学习能力的神经网络的硬件实现
- 批准号:
19500198 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development and application of reversible addition reaction of endohedral metallofullerenes
内嵌金属富勒烯可逆加成反应的开发及应用
- 批准号:
19750027 - 财政年份:2007
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Theoretical and empirical study on economic consciousness (attitudes) and social evaluation of economy.
经济意识(态度)与经济社会评价的理论与实证研究。
- 批准号:
07301025 - 财政年份:1995
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development and Applications of Time-Resolved M ssbauer Spectroscopy
时间分辨穆斯堡尔谱的发展与应用
- 批准号:
59840018 - 财政年份:1984
- 资助金额:
$ 0.9万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research
相似国自然基金
基于FPGA的嗅觉系统神经计算芯片及其机器嗅觉应用研究
- 批准号:MS25F030039
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于FPGA的冷媒气体传感器海量数据高速采集处理系统的研发
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 FPGA 的超图计算加速器关键技术研究
- 批准号:Q24F020078
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
FPGA高层次综合的能效优化方法研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
数据流驱动的面向FPGA集群的混合计算粒度DCNN加速器设计理论、优化方法与关键技术研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
面向FPGA的阻变型抗辐射配置存储器的单粒子效应与加固技术研究
- 批准号:62374019
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向领域应用的FPGA图计算异构并行算法探索与研究
- 批准号:
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
布线质量驱动的3D FPGA布局算法研究
- 批准号:62374138
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
面向FPGA的USB 3.2芯片的关键技术研究
- 批准号:12375192
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Elements: Portable Library for Homomorphic Encrypted Machine Learning on FPGA Accelerated Cloud Cyberinfrastructure
元素:FPGA 加速云网络基础设施上同态加密机器学习的便携式库
- 批准号:
2311870 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Machine Learning and FPGA optimisation for proton beam therapy
用于质子束治疗的机器学习和 FPGA 优化
- 批准号:
2869997 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Studentship
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2411207 - 财政年份:2023
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
- 批准号:
2153525 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Reinforcement Learning for Sequential Decision Making in FPGA CAD
FPGA CAD 中顺序决策的强化学习
- 批准号:
571824-2022 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
University Undergraduate Student Research Awards
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant
Acceleration of Deep Learning Inference on a Multi-FPGA system through a software overlay
通过软件叠加加速多 FPGA 系统上的深度学习推理
- 批准号:
576004-2022 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
A High-level Design Environment for the Rapid FPGA Implementations of Deep Learning Architecture
用于快速 FPGA 实现深度学习架构的高级设计环境
- 批准号:
2838895 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Studentship
Reinforcement Learning for Sequential Decision Making in FPGA CAD
FPGA CAD 中顺序决策的强化学习
- 批准号:
571753-2022 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
University Undergraduate Student Research Awards
EAGER: III: Small: Green Granular Neural Networks with Fast FPGA-based Incremental Transfer Learning
EAGER:III:小型:具有基于 FPGA 的快速增量迁移学习的绿色粒度神经网络
- 批准号:
2234227 - 财政年份:2022
- 资助金额:
$ 0.9万 - 项目类别:
Standard Grant














{{item.name}}会员




