Fast algorithms for accurate molecular dynamics simulations of membrane proteins

用于膜蛋白精确分子动力学模拟的快速算法

基本信息

项目摘要

To compress the costs of the molecular dynamics simulations of biomolecules, Coulomb interactions are usually calculated using fast algorithms, such as the fast multipole method (FMM) and particle mesh Ewald (PME). On the other hand, in biomembrane simulations, it is usual to repeat membranes in the z-axis direction so as to constitute a three-dimensional periodicity, which can then be directly handled by PME and periodic FMM. However, the artificial repeat of the membrane may cause undesirable artifacts on the simulations. In this work, we originally aimed at developing a periodic FMM that will circumvent such artifacts. We first derived the formula for virials in the framework of the FMM theory, which are necessary for constant-pressure simulation. We found that the conversion of the multipole to local expansion, which is the key operation of FMM, affects the virials in two ways : through lattice-dependence of the conversion matrix and through that of the multipoles. The latter contribution has not been reported previously. The FMM computation is then O(NlogN) instead of O(N). The results of numerical tests also suggest that the net dipole of the unit cell produces a serious effect on the precision of the Coulomb interactions and hence it is equally important to develop an effective strategy for removing the effect, although the development is left for future work. On the other hand, periodic FMMs generally suffer from great deal of computation regarding interaction between neighboring cells. In this work, a cluster computing system, which is based on the cooperation of FMM algorithm and dedicated hardware for the Coulomb-force evaluation, was developed and improved. Currently, further investigation on the accurate virial calculation is being undertaken, which is necessary for producing accurate FMM calculation as well as for reducing artifacts that may be caused by the periodicity.
为了压缩生物分子的分子动力学模拟的成本,通常使用快速算法来计算库仑相互作用,例如快速多极方法(FMM)和粒子网格埃瓦尔德(PME)。另一方面,在生物膜模拟中,通常在z轴方向上重复膜,以构成三维周期性,然后可以直接由PME和周期FMM处理。然而,膜的人工重复可能导致模拟上的不期望的伪影。在这项工作中,我们最初的目标是开发一个周期性的FMM,将规避这些文物。我们首先在FMM理论的框架下推导了定压模拟所必需的维里公式。我们发现,多极子的局部扩展,这是FMM的关键操作的转换,影响维里在两个方面:通过晶格依赖的转换矩阵,并通过多极子。后一项贡献以前没有报告过。因此,FMM的计算时间复杂度为O(NlogN),而不是O(N)。数值测试的结果还表明,单胞的净偶极对库仑相互作用的精度产生严重影响,因此开发一种有效的策略来消除这种影响同样重要,尽管该开发工作留待未来工作。另一方面,周期性的FFT通常遭受关于相邻小区之间的交互的大量计算。在这项工作中,一个集群计算系统,这是基于合作的FMM算法和专用硬件的库仑力评估,开发和改进。目前,对精确维里计算的进一步研究正在进行中,这对于产生精确的FMM计算以及减少可能由周期性引起的伪影是必要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AMISAKI Takashi其他文献

AMISAKI Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AMISAKI Takashi', 18)}}的其他基金

Methods based on heterogeneous mixed effects model for protein dynamics analysis
基于异质混合效应模型的蛋白质动力学分析方法
  • 批准号:
    19K12203
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparisons of three-dimensional structures of proteins using hierarchical models and regularization for between-protein variations
使用分层模型和蛋白质间变异正则化比较蛋白质的三维结构
  • 批准号:
    22500275
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of fast multipole reaction field methods for accurate simulations of super biomolecules
开发用于精确模拟超级生物分子的快速多极反应场方法
  • 批准号:
    18500226
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast algorithm/ hardware joint acceleration for molecular dynamics simulations and its efficacy confirmation
分子动力学模拟快速算法/硬件联合加速及其有效性验证
  • 批准号:
    13680743
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of high performance computation system with great precision for molecular dynamics simulations
开发用于分子动力学模拟的高精度高性能计算系统
  • 批准号:
    10680636
  • 财政年份:
    1998
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Verification on the effectiveness of minimum relative entropy method for pharmacokinetic analysis
最小相对熵法药代动力学分析有效性验证
  • 批准号:
    08672609
  • 财政年份:
    1996
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Determining structural dynamics of membrane proteins in their native environment: focus on bacterial antibiotic resistance
确定膜蛋白在其天然环境中的结构动力学:关注细菌抗生素耐药性
  • 批准号:
    MR/X009580/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Fellowship
Development of on-chip membrane protein preparation method and structure/function analysis of giant membrane proteins
片上膜蛋白制备方法开发及巨膜蛋白结构/功能分析
  • 批准号:
    23K04926
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In situ structural characterization of membrane proteins for drug development
用于药物开发的膜蛋白的原位结构表征
  • 批准号:
    2898988
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Studentship
Integral Membrane Proteins and Lipids Ejected from the Membranes of Native Tissues
从天然组织膜中排出的完整膜蛋白和脂质
  • 批准号:
    EP/Y029259/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grant
Structure, function and molecular interaction studies of membrane proteins important in mitochondrial energy metabolism
线粒体能量代谢中重要的膜蛋白的结构、功能和分子相互作用研究
  • 批准号:
    2869890
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Studentship
Function and Trafficking of Flagellar Membrane Proteins in Leishmania mexicana
墨西哥利什曼原虫鞭毛膜蛋白的功能和运输
  • 批准号:
    10632896
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
High-throughput Discovery of Antibodies against Understudied Membrane Proteins
针对正在研究的膜蛋白的抗体的高通量发现
  • 批准号:
    10698472
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
Dissecting the lipid profile in engineered Escherichia coli strains of membrane proteins
剖析膜蛋白工程大肠杆菌菌株的脂质谱
  • 批准号:
    BB/X018326/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grant
Neurosteroid and Cholesterol Binding to Integral Membrane Proteins
神经类固醇和胆固醇与整合膜蛋白的结合
  • 批准号:
    10623887
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
Biogenesis of alpha-helical mitochondrial outer membrane proteins in higher eukaryotes
高等真核生物中α螺旋线粒体外膜蛋白的生物发生
  • 批准号:
    10723598
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了