Development of high performance computation system with great precision for molecular dynamics simulations
开发用于分子动力学模拟的高精度高性能计算系统
基本信息
- 批准号:10680636
- 负责人:
- 金额:$ 2.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular dynamics simulation provides valuable means to study the structure and dynamics of molecular systems. Since it demands vast computational resources, particularly when it is applied to large biological systems, it presents challenging problems to computational technology. Although several fast algorithms were developed for reducing the computation time, these algorithms encounter certain difficulties. In this work, I first reformulated the fast multipole method (FMM) for further decreasing the computation time and memory requirements. Secondly, I developed two reliable algorithms for accomplishing periodicity in the FMM framework. One method employs the Ewald-like technique, and the other uses a macroscopic hierarchical structure of cells. These methods developed in this work enable reliable simulations of biological macromolecules.Since every fast algorithm including FMM employs a certain kind of approximation, the algorithms suffer from inaccuracy in some situation. In this work, I found that use of a special-purpose machine for a task involved in FMM improve both accuracy and computation speed. Such a computation system with novel algorithms was actually developed in this work. The performance of the system was confirmed to be several hundred times higher than those of ordinary workstations.
分子动力学模拟为研究分子体系的结构和动力学提供了有价值的手段。由于它需要大量的计算资源,特别是当它应用于大型生物系统时,它给计算技术带来了具有挑战性的问题。虽然已经开发了几种快速算法来减少计算时间,但这些算法都遇到了一定的困难。在这项工作中,我首先重新制定了快速多极子方法(FMM),以进一步减少计算时间和内存需求。其次,在FMM框架下,提出了两种可靠的周期性算法。一种方法使用类似Ewald的技术,另一种方法使用宏观的细胞层次结构。由于包括FMM在内的每一种快速算法都使用某种近似,因此算法在某些情况下会出现不准确的情况。在这项工作中,我发现对FMM中涉及的任务使用专用机器可以提高精度和计算速度。这样一个算法新颖的计算系统正是在这项工作中开发出来的。经证实,该系统的性能比普通工作站高出几百倍。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T. Amisaki: "Precise and efficient Ewald summation for periodic fast multipole method"J. Comput. Chem.. 21 (印刷中). (2000)
T. Amisaki:“周期性快速多极法的精确且高效的 Ewald 求和”J. Comput。21(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Amisaki: "Precise and efficient Ewald summation for periodic fast multipole method"J. Comput. Chem.. 21 (in press). (2000)
T.Amisaki:“周期性快速多极子方法的精确高效 Ewald 求和”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AMISAKI Takashi其他文献
AMISAKI Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AMISAKI Takashi', 18)}}的其他基金
Methods based on heterogeneous mixed effects model for protein dynamics analysis
基于异质混合效应模型的蛋白质动力学分析方法
- 批准号:
19K12203 - 财政年份:2019
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Comparisons of three-dimensional structures of proteins using hierarchical models and regularization for between-protein variations
使用分层模型和蛋白质间变异正则化比较蛋白质的三维结构
- 批准号:
22500275 - 财政年份:2010
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of fast multipole reaction field methods for accurate simulations of super biomolecules
开发用于精确模拟超级生物分子的快速多极反应场方法
- 批准号:
18500226 - 财政年份:2006
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast algorithms for accurate molecular dynamics simulations of membrane proteins
用于膜蛋白精确分子动力学模拟的快速算法
- 批准号:
16500187 - 财政年份:2004
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fast algorithm/ hardware joint acceleration for molecular dynamics simulations and its efficacy confirmation
分子动力学模拟快速算法/硬件联合加速及其有效性验证
- 批准号:
13680743 - 财政年份:2001
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Verification on the effectiveness of minimum relative entropy method for pharmacokinetic analysis
最小相对熵法药代动力学分析有效性验证
- 批准号:
08672609 - 财政年份:1996
- 资助金额:
$ 2.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2403723 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
NSF Workshop on Algorithm-Hardware Co-design for Medical Applications
NSF 医疗应用算法硬件协同设计研讨会
- 批准号:
2337454 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247891 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
CAREER: SHF: Chimp: Algorithm-Hardware-Automation Co-Design Exploration of Real-Time Energy-Efficient Motion Planning
职业:SHF:黑猩猩:实时节能运动规划的算法-硬件-自动化协同设计探索
- 批准号:
2239945 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant
SHF: Medium: Cross-Stack Algorithm-Hardware-Systems Optimization Towards Ubiquitous On-Device 3D Intelligence
SHF:中:跨堆栈算法-硬件-系统优化,实现无处不在的设备上 3D 智能
- 批准号:
2312758 - 财政年份:2023
- 资助金额:
$ 2.18万 - 项目类别:
Continuing Grant














{{item.name}}会员




