Information retrieval by a neural-network system with continuous attractors
具有连续吸引子的神经网络系统的信息检索
基本信息
- 批准号:16500190
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It has long been hypothesized that information retrieval in neural-network systems is described by dynamical systems with discrete fixed-point attractors. However, evidence from neurophysiological findings of graded persistent activity and computational modeling of its neural mechanisms suggests that retrieval of short-term memory from long-term memory in the brain is more likely to be described by dynamics with fixed-point attractors that continuously depend on the initial state (say, continuous-attractor dynamics). In psychology, it has been generally considered that long-term memory is archived in a network structure (e.g. semantic network). Here we propose information retrieval from a variety of real-world complex networks (WWW/internet, citation between scientific articles, human network, social network, gene/biochemical-reaction network, etc.) by continuous-attractor dynamics, by analogy with retrieval of short-term memory from a large network of long-term memory. For a given com … More plex network, a neuron with hysteretic input/output relation corresponds with each node, and a synaptic connection with each link. What a user wants to know (i.e. user's "query") is encoded in an initial state of the activation pattern of the neurons. The hysteretic characteristics assumed for each neuron are essential for producing robust continuous attractors. An activation pattern obtained as a continuous attractor represents an "answer" to the query. By applying this information-retrieval algorithm to a citation network of scientific articles (300,000 neuroscience provided Science Citation Index Expanded, Thomson Scientific, with permission), we confirmed that, in response to a given query, a set of relevant documents were adequately extracted. For instance, for a query "graded persistent activity and neural integrator", by visualizing the extracted documents and citation relations between them, one can comprehend which articles are principal or accessory and which relations between articles are mainstreams of tributaries. To elucidate whether real neurons have hysteretic characteristics such as those hypothesized in the proposed algorithm, we analyzed graded activity recorded from the monkey cingulate cortex during Go/No-go discrimination task. We found that the firing-rate distribution shows clear bimodality, which is consistent with the theoretical prediction for neurons with hysteretic characteristics. It was also demonstrated that a recurrent network of neurons with hysteretic characteristics could well replicate experimentally observed features of graded activity. These results suggest that information retrieval by the proposed algorithm is quite analogous to short-term memory retrieval from long-term memory in the brain. To our knowledge, this is the first successful example to infer non-trivial, practically useful information-processing algorithm from real brain. Less
长期以来,人们一直认为,神经网络系统中的信息检索是由具有离散固定点吸引子的动态系统描述的。然而,从神经力学分级持续活性和计算模型的神经生理发现的证据表明,从大脑中的长期记忆中检索短期记忆的回收更可能是由具有固定点吸引子的动力学来描述的,这些动力可以不断地取决于初始状态(例如,持续吸收器动力学)。在心理学中,人们普遍认为,长期记忆在网络结构(例如语义网络)中存档。在这里,我们通过连续的ATTRACTOR动力学从各种现实世界中的复杂网络(www/Internet,人类网络,社交网络,基因/生化反应网络等之间的引用)中提出信息检索,该网络与从长期记忆中的短期记忆中相比,通过连续的ATRATER-ADTRACTOR动力学进行了类似。对于给定的COM…更多的PLEX网络,具有滞后/输出关系的神经元与每个节点相对应,并且与每个链接的突触连接相对应。用户想知道的(即用户的“查询”)以神经元激活模式的初始状态编码。每个神经元假定的滞后特性对于产生稳健的连续吸引子至关重要。作为连续吸引子获得的激活模式代表了查询的“答案”。通过将此信息 - 恢复算法应用于科学文章的引文网络(300,000个神经科学提供了科学引文指数扩展,汤姆森科学,并获得了许可),我们确认,在回应给定的查询时,一组相关的文档得到了充分的提取。例如,对于查询“分级持续活动和神经元积分器”,通过可视化提取的文档和它们之间的引文关系,可以理解哪些文章是主要或附件,哪些文章之间的关系是支流的主流。为了阐明实际神经元是否具有滞后特征,例如在拟议的算法中假设的特征,我们分析了在GO/NO-GO歧视任务期间从猴子扣带皮质中记录的分级活性。我们发现,点火率分布显示出明显的双峰性,这与具有滞后特征的神经元的理论预测一致。还证明,具有滞后特征的神经元的复发网络可以很好地复制实验观察到的分级活性的特征。这些结果表明,所提出的算法的信息检索与大脑长期记忆的短期记忆检索相似。据我们所知,这是从真实大脑推断出非平凡的,实际上有用的信息处理算法的第一个成功示例。较少的
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Combined modeling an extracellular recording studies of up and down transitions of neurons in awake or behaving monkeys
清醒或行为猴子神经元上下转换的细胞外记录联合建模研究
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Okamoto;H.;Isomura;Y.;Takada;M.;Fukai;T.
- 通讯作者:T.
Information Retrieval Based on a Neural-Network System with Multi-stable Neurons
基于多稳态神经元神经网络系统的信息检索
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Tsuboshita;Y.;Okamoto;H.
- 通讯作者:H.
漸次的持続活性の神経生理学的および計算論的知見が開く連想記憶の新しい地平
逐渐持续激活的神经生理学和计算知识为联想记忆开辟了新视野
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:岡本洋;坪下幸寛;深井朋樹
- 通讯作者:深井朋樹
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKAMOTO Hiroshi其他文献
OKAMOTO Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKAMOTO Hiroshi', 18)}}的其他基金
Rapid and efficient control of physical properties by terahertz pulses in electronic-type ferroelectrics
通过太赫兹脉冲快速有效地控制电子型铁电体的物理特性
- 批准号:
25247049 - 财政年份:2013
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Common neural basis of Weber's law and Hick's law
韦伯定律和希克定律的共同神经基础
- 批准号:
23500379 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of the property of low-defect-density quantum dots for the purpose of developing high efficiency optical devices.
研究低缺陷密度量子点的特性,以开发高效光学器件。
- 批准号:
23560354 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The characteristics of American constituent power theory
美国制宪权理论的特点
- 批准号:
22730014 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Estimating spatial distribution of botanical composition and herbage mass in pastures using machine vision
使用机器视觉估计牧场植物成分和牧草质量的空间分布
- 批准号:
22780235 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Ultrafast coherent nonlinear optical responses in carbon nanotubes
碳纳米管中的超快相干非线性光学响应
- 批准号:
20340072 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Spatiotemporally organized retrieval of information inspired by the neural mechanism of mental processes
受心理过程神经机制启发的时空组织信息检索
- 批准号:
20500279 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Explorations of new optical switching phenomena in strongly correlated electron systems
强相关电子系统中新光开关现象的探索
- 批准号:
16340086 - 财政年份:2004
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Enhancement of the Liver Regeneration by Angiotensin II Type 1 Receptor Blocker : Role of Angiotensin II and Bradykinin
血管紧张素 II 1 型受体阻滞剂增强肝脏再生:血管紧张素 II 和缓激肽的作用
- 批准号:
16590130 - 财政年份:2004
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of gigantic third-order optical nonlinearity in low-dimensional correlated electron systems
低维相关电子系统中巨三阶光学非线性研究
- 批准号:
13440090 - 财政年份:2001
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
抛物系统的(X,Y)-型连续性及其在吸引子理论中的应用
- 批准号:11801195
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
记忆的连续吸引子机制
- 批准号:61572112
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
连续吸引子神经网络神经形态芯片实现的研究
- 批准号:31500863
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
非自治系统中随机吸引子的正则性、连续性及其概率性质
- 批准号:11571283
- 批准年份:2015
- 资助金额:50.0 万元
- 项目类别:面上项目
连续吸引子的学习算法研究
- 批准号:61303015
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Associative memory model that extracts correlated structure of observed images and stores the individual images as continuous attractor
联想记忆模型,提取观察到的图像的相关结构并将单个图像存储为连续吸引子
- 批准号:
25330298 - 财政年份:2013
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)