Efficiency and uncertainty measurement in microsimulations
微观模拟中的效率和不确定性测量
基本信息
- 批准号:465374470
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The MikroSim base population is a (partially) synthetic, close-to-reality population of Germany, containing more than 80 million individuals in approximately 40 million households in the year 2011. Using individual transition probabilities, the whole population can be projected into the future. The projection of such a large number of individual observations enables detailed analyses, i.e.\ analyses with a close regional or contextual focus. At the same time, it causes an enormous computational effort. A more wide-spread use of this important analysis tool can be fostered by reducing the necessary computation time.The complexity of dynamic microsimulation models, that originates from the nature of the investigated research questions, leads to a multitude of potential influences on the precision of analysis results. While it is common practice in the social sciences to state measures of precision with estimators, like confidence intervals, this is typically neglected in the context of microsimulations. The reasons for this are the lack of available methods for the systematic measurement and combination of all relevant sources of uncertainty on the one hand, and the additional computational burden associated with such a measurement on the other hand. However, in order to be able to judge the validity of results, the measurement of their precision is also needed in microsimulations.Therefore, the main research focus within this project is on efficiency and uncertainty measurement in microsimulations which are closely related to each other. First, the potential for efficiency improvements in microsimulations by using samples from the base population for projections is investigated. Special attention is paid to the suitability of different complex sampling designs for the projection of target values on different levels of regional and content-related granularity. Then, the diverse sources of uncertainty in the simulation process are identified. Using different statistical methods, these sources are implemented into the simulation structure as an aggregated uncertainty process. The latter can then be used to construct quasi confidence intervals for simulation results that facilitate the judgement of their validity.The methods that are developed within this project are directly applied to microsimulations of the other projects within the Research Unit. Additionally, they are provided to researchers in an application-oriented guideline and implemented as a tool within the prototype of a simulation data centre.
MikroSim基础人口是德国的(部分)合成的、接近现实的人口,2011年包含约4000万个家庭中的8000多万人。使用个体转移概率,可以预测整个种群的未来。如此大量的单个观测的投影使得能够进行详细的分析,即分析与密切的区域或上下文的重点。与此同时,它会导致巨大的计算工作量。通过减少必要的计算时间,可以促进这一重要分析工具的更广泛的使用。动态微观模拟模型的复杂性源于所调查研究问题的性质,导致对分析结果精度的许多潜在影响。虽然在社会科学中,用估计量(如置信区间)来衡量精度是常见的做法,但在微观模拟的背景下,这通常被忽略。其原因一方面是缺乏系统测量和综合所有相关不确定性来源的可用方法,另一方面是与这种测量相关的额外计算负担。然而,为了能够判断结果的有效性,在微观模拟中还需要测量其精度,因此,本项目的主要研究重点是相互密切相关的微观模拟中的效率和不确定性测量。首先,微观模拟的效率提高的潜力,通过使用样本的基础人口的预测进行了研究。特别注意的是,不同的复杂的抽样设计的目标值的预测在不同层次的区域和内容相关的粒度的适合性。然后,在模拟过程中的不确定性的各种来源进行了识别。使用不同的统计方法,这些来源作为聚合不确定性过程被实施到模拟结构中。后者则可以用来构建准置信区间的模拟结果,便于判断其validity.The的方法,在这个项目中开发的直接应用到微观模拟的研究单位内的其他项目。此外,他们提供给研究人员在一个面向应用的准则,并作为一个工具内的模拟数据中心的原型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ralf Münnich其他文献
Professor Dr. Ralf Münnich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ralf Münnich', 18)}}的其他基金
Integration of additional micro data sets in the core data
将额外的微观数据集集成到核心数据中
- 批准号:
395374378 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Units
Modelling response propensities in access panel based surveys
基于访问小组的调查中的响应倾向建模
- 批准号:
45462459 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
应用ISOCS监测侵蚀区土壤中137Cs,210Pbex,7Be的适用性
- 批准号:40701099
- 批准年份:2007
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
空间数据不确定性的若干问题研究
- 批准号:40352002
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
Geostatistical Software for Non-Parametric Geostatistical Modeling of Uncertainty
用于不确定性非参数地统计建模的地统计软件
- 批准号:
10697081 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Functional and behavioral dissection of higher order thalamocortical circuits in schizophrenia.
精神分裂症高阶丘脑皮质回路的功能和行为解剖。
- 批准号:
10633810 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
- 批准号:
10641529 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A data science framework for transforming electronic health records into real-world evidence
将电子健康记录转化为现实世界证据的数据科学框架
- 批准号:
10664706 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Deep Learning Image Analysis Algorithms to Improve Oral Cancer Risk Assessment for Oral Potentially Malignant Disorders
深度学习图像分析算法可改善口腔潜在恶性疾病的口腔癌风险评估
- 批准号:
10805177 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
- 批准号:
10739049 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Dissemination and implementation of DIGEST™ as an evidence-based measurement tool for dysphagia in cancer
传播和实施 DIGEST™ 作为癌症吞咽困难的循证测量工具
- 批准号:
10584824 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Improving Age- and Cause-Specific Under-Five Mortality Rates (ACSU5MR) by Systematically Accounting Measurement Errors to Inform Child Survival Decision Making in Low Income Countries
通过系统地核算测量误差来改善特定年龄和特定原因的五岁以下死亡率 (ACSU5MR),为低收入国家的儿童生存决策提供信息
- 批准号:
10585388 - 财政年份:2023
- 资助金额:
-- - 项目类别: