Study on the Elimination of Supercooling by Forming Structured Water

形成结构水消除过冷的研究

基本信息

  • 批准号:
    22H01850
  • 负责人:
  • 金额:
    $ 11.4万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

シリカ外殻を有する蓄熱カプセルにおいて,いくつかの無機水和物系の蓄熱材を内包した場合,過冷却が消失する現象が確認されている.そのメカニズムとして,シリカ外殻の内表面において構造水が形成され,内壁近傍の無機水和物の水分子量が低下し,融点が局所的に上昇するためであると考えられる.その証左としてpHが小さいアンモニウムミョウバン(pH=2)においては80Kもの過冷却が生じる.カプセル外殻をなすシリカの等電点はpH=2であり,この場合には構造水が形成されないためであると考えられる,本年度はシリカ外殻のゼータ電位を変更し,過冷却抑制を行う方法を検討した.具体的にはアルミナ,ジルコニアをシリカ外殻に導入によってゼータ電位を改変する手法の検討を行った.なおアルミナについては,高pH領域において,溶解することが判明したので,ジルコニアの導入を行うこととした.ジルコニア導入に関しては,オキシ硝酸ジルコニウム溶液を浸漬させて導入する方法と,ジルコニアナノ粒子(平均径50nm)を導入する方法を試みた.これらのうち,ジルコニアナノ粒子は外殻に対する質量割合が最大で1%程度しか導入できなかった.したがってオキシ硝酸ジルコニウム溶液の浸漬法の検討を主体的におこなった.それにより最大7%のジルコニアをシリカ外殻に導入することに成功した.その結果としてゼータ電位の等電点を,pH2からpH3.5pHまで変更することに成功した.これによりpHが2程度の蓄熱材であるアンモニウムミョウバン水和物の過冷却特性を80Kから50Kに改善することができた.したがって,ゼータ電位改善を行うことで,過冷却解消がなされることが明らかとなった.今後ジルコニア導入量を増大させることで,ゼータ電位の等電点を大きく変更することによって,より過冷却解消効果が期待できる.
There is a thermal storage system in the external equipment, and the machine-free water and material storage equipment are closed in the package, and the cooling effect disappears as a confirmation of the temperature. The temperature is in the air, the water on the inner surface of the equipment is closed, and the molecular weight of water and water is low near the inner wall. At the melting point of the office, there is an examination of the upper part of the machine. The temperature is very low. The temperature is very small. The temperature is low. The temperature is 80K. The temperature is 80K. The cooling temperature is very low. In the case of the pH=2 plant, the utility model is used to make water coolers. During the current year, there is an increase in the level of electrical potential due to the use of cooling, and the method of cooling suppression is in operation. In the case of specific environmental pollution, the method of changing the level of electrical potential is not valid in the current year. This year, it is difficult to change the level of electrical potential in the current year. This year, the cooling suppression method is used in this year, and the cooling suppression method is used in this year. The solution was soaked in the solution, the solution was immersed in the solution, the particles (average diameter 50nm) were immersed in the solution, and the particles (average diameter) were added into the method. This is not true. The maximum temperature is less than 1%. The maximum temperature is not equal to 1%. The solution immersion method is used to determine the temperature of the main body of the company. the maximum temperature is 7%. The temperature of the main body is less than 7%. The import of foreign gas was successfully loaded. The results show that the electrical potential is located at the point of contact. PH2, pH3.5pH, temperature, temperature, In the future, the cooling temperature will be higher than that of the other power stations, such as the cooling temperature, the cooling temperature, the temperature and the temperature.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hard-Shell Microcapsules Containing Phase Change Materials for Latent Heat Transportation
用于潜热传输的含有相变材料的硬壳微胶囊
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Suzuki Hiroshi;Hidema Ruri;Usa Sohei;Horie Takafumi;Komoda Yoshiyuki;Ohmura Naoto;Taniya Keita;Ichihashi Yuichi;Nishiyama Satoru;Asano Hitoshi;Hiroshi Suzuki
  • 通讯作者:
    Hiroshi Suzuki
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

鈴木 洋其他文献

胸骨圧迫が原因による著明な縦隔血腫から閉塞性ショックを来した1例
胸外按压致纵隔明显血肿阻塞性休克一例
  • DOI:
    10.1002/jja2.12301
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    前田 敦雄;竹内 晋;前澤 秀之;宮本 和幸;佐々木 純;鈴木 洋;林 宗貴
  • 通讯作者:
    林 宗貴
転写凝集体とゲノム高次構造
转录聚集体和基因组构象
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tellier Michael;Zaborowska Justyna;Neve Jonathan;Nojima Takayuki;Hester Svenja;Fournier Marjorie;Furger Andre;Murphy Shona;鈴木 洋
  • 通讯作者:
    鈴木 洋
ヒト疾患におけるマイクロRNAの機能獲得型変異の発見
发现人类疾病中 microRNA 的功能获得性突变
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kandeel;M.;Yamamoto;M.;Tani;H.;Kobayashi;A.;Gohda;J.;Kawaguchi;Y.;Park;B. K.;Kwon;H.-J.;Inoue;J. and Alkattan;A.;鈴木 洋
  • 通讯作者:
    鈴木 洋
Giant nonreciprocity in spinwave propagation magnetoelastically excited in Ni/Si bilayer films
Ni/Si 双层薄膜中磁弹性激发的自旋波传播的巨大非互易性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    安村 充;島田 大樹;谷屋 啓太;堀江 孝史;日出間 るり;菰田 悦之;市橋 祐一;大村 直人;鈴木 洋;西山 覚;S. Tateno and Y. Nozaki
  • 通讯作者:
    S. Tateno and Y. Nozaki
遺伝子制御と相分離
基因调控和相分离
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Furuse Yuki;Ko Yura K;Saito Mayuko;Shobugawa Yugo;Jindai Kazuaki;Saito Tomoya;Nishiura Hiroshi;Sunagawa Tomimasa;Suzuki Motoi;Oshitani Hitoshi;National Task Force for COVID-19 Outbreak in Japan;新田摂子;鈴木 洋
  • 通讯作者:
    鈴木 洋

鈴木 洋的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('鈴木 洋', 18)}}的其他基金

構造水形成による過冷却解消現象に関する研究
结构水形成过冷消除现象的研究
  • 批准号:
    23K23118
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
がんにおける染色体外DNAの統合的理解と治療標的化
癌症染色体外 DNA 的综合理解和治疗靶向
  • 批准号:
    24H00614
  • 财政年份:
    2024
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
低分子RNAネットワークのシステム的理解と新たな癌制御アプローチへの応用
对小 RNA 网络的系统理解及其在新癌症控制方法中的应用
  • 批准号:
    24689018
  • 财政年份:
    2012
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
マイクロRNAによる癌微小環境の制御・維持機構の解明
microRNA阐明癌症微环境的控制和维持机制
  • 批准号:
    22890038
  • 财政年份:
    2010
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
マイクロRNAおよびオートファジーによる発癌・癌進展の制御メカニズムの解明
通过microRNA和自噬阐明癌发生和癌症进展的控制机制
  • 批准号:
    08J55101
  • 财政年份:
    2008
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
自閉症児の生きる力を育てる指導のあり方 〜知恵とかかわりの力を育む授業の創造〜
如何提供培养自闭症儿童生活能力的指导〜开设培养智慧和交往能力的课程〜
  • 批准号:
    12909010
  • 财政年份:
    2000
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (B)
経皮的冠動脈形成術後の細胞増殖とその抑制に関する組織細胞化学的検討
经皮冠状动脉成形术后细胞增殖及其抑制的组织细胞化学研究
  • 批准号:
    09770504
  • 财政年份:
    1997
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
乱流構造のアクティブ制御を用いた伝熱促進に関する基礎的研究
湍流结构主动控制强化传热基础研究
  • 批准号:
    07750232
  • 财政年份:
    1995
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
電子衝突によるスピン禁制遷移の前方散乱微分断面積における異常性の研究
电子碰撞导致的自旋禁跃跃迁前向散射微分截面异常研究
  • 批准号:
    02640295
  • 财政年份:
    1990
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
電子衝突光イオン化シュミレーター実験による原子分子の内殻過程の研究
利用电子碰撞光电离模拟器实验研究原子和分子的内壳过程
  • 批准号:
    59460035
  • 财政年份:
    1984
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

過冷却現象を起こした潜熱蓄熱材からの熱回収
从引起过冷现象的潜热储存材料中回收热量
  • 批准号:
    19H00241
  • 财政年份:
    2019
  • 资助金额:
    $ 11.4万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了