Machine Learning for Explainable Roundtrip Polymer Reaction Engineering
用于可解释的往返聚合物反应工程的机器学习
基本信息
- 批准号:466601458
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Polymers are important materials in everybody’s daily life and in numerous technical applications. They have a wide range of properties that can be tailored by the type and the conditions of the production process, ideally by modeling of the polymerization process. The project ML-PRE aims to bridge the gap between state-of-the-art machine learning (ML) methods and their application in modeling and optimization in polymer reaction engineering (PRE). This will enable a novel approach referred to as roundtrip PRE, covering integrated polymerization process modeling and reverse engineering of the polymerization process. The reverse engineering aspect is particularly novel to the field. The overall approach aims at designing new sustainable production processes and developing polymers with better or even new properties.The baseline of the project is the modeling of polymerization processes using kinetic Monte Carlo (KMC) methods. An open-source KMC simulator will be used to generate data sets for training and testing the ML methods. The overall goal is broken down into the following scientific objectives of ML-PRE: (1) To create a coherent and validated suite of scalable ML-based models for polymerization modeling, facilitating fast and efficient simulation-supported learning of ML models, extending the KMC simulator for novel types of problems (e.g. acrylate polymerizations at high temperature, diffusion-controlled termination). (2) To create ML-based approaches for reverse engineering of polymerization processes with modeling and optimization capabilities. (3) To create ML-based models for learning controllers of semi-batch polymerization processes. (4) To create a general and transferable methodology for increasing the transparency of ML created in the project by means of suitable and validated explainability techniques. From the ML perspective, the main innovations are provided by the first and the fourth objective: Objective 1 is about creating a coherent suite of validated ML models with interfaces designed to support the flexibility to support the complex bi-directional workflows in roundtrip PRE. The second main innovation is that through Objective 4 above, we aim at a general and transferable methodology to bring about and maintain transparency and explainability of the ML methods created and validated for roundtrip PRE.Referring to the collaboration matrix of the SPP call we mainly address target area #1 (optimal decision making); through the work on ML-supported simulation we also cover some aspects of target area #2 (introducing/enforcing physical laws in machine learning models). W.r.t. the collaboration matrix we expect and work towards that results for mechanistic models in the 1st column (Phenomena / Micro-scale) will be transferable to the areas mechanistic models, experiments (real process), and optimization of the 3rd column (Flowsheet / Process) and vice versa.
聚合物是每个人日常生活和众多技术应用中的重要材料。它们具有广泛的特性,可以根据生产工艺的类型和条件进行定制,理想情况下可以通过聚合工艺的建模进行定制。ML-PRE项目旨在弥合最先进的机器学习(ML)方法及其在聚合物反应工程(PRE)建模和优化中的应用之间的差距。这将使一种新的方法称为往返PRE,涵盖集成的聚合过程建模和聚合过程的逆向工程。逆向工程方面对于本领域是特别新颖的。总体方法旨在设计新的可持续生产工艺,开发具有更好甚至新性能的聚合物。该项目的基线是使用动力学蒙特卡罗(KMC)方法对聚合过程进行建模。开源KMC模拟器将用于生成用于训练和测试ML方法的数据集。ML-PRE的总体目标分为以下科学目标:(1)创建一套一致且经过验证的可扩展ML模型,用于聚合建模,促进ML模型的快速有效模拟支持学习,扩展KMC模拟器以解决新型问题(例如,高温下的丙烯酸酯聚合,扩散控制终止)。(2)创建具有建模和优化功能的聚合过程逆向工程的ML方法。(3)为半间歇聚合过程的学习控制器建立基于ML的模型。(4)创建一个通用的和可转移的方法,通过合适的和验证的可解释性技术来增加项目中创建的ML的透明度。从机器学习的角度来看,主要的创新是由第一个和第四个目标提供的:目标1是关于创建一套一致的经验证的机器学习模型,其接口旨在支持灵活性,以支持往返PRE中复杂的双向工作流。 第二个主要创新是,通过上述目标4,我们旨在提供一种通用且可转移的方法,以实现并保持为往返PRE创建和验证的ML方法的透明度和可解释性。参考SPP调用的协作矩阵,我们主要解决目标领域#1(最优决策);通过ML支持的仿真工作,我们还涵盖了目标领域#2的某些方面(在机器学习模型中引入/执行物理定律)。W.r.t.我们所期望合作矩阵以及为第一列(现象/微观尺度)中的机理模型的结果所做的工作将可转移到机理模型、实验(真实的过程)和第三列(流程图/过程)的优化领域,反之亦然。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Sabine Beuermann其他文献
Professorin Dr. Sabine Beuermann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Sabine Beuermann', 18)}}的其他基金
Polymer electrolyte membranes (PEM) for vanadium redox flow batteries
全钒氧化还原液流电池用聚合物电解质膜(PEM)
- 批准号:
411688235 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Herstellung submikroner PVDF-Partikel
亚微米PVDF颗粒的生产
- 批准号:
184843374 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Radikalische Copolymerisationen von Fluoralkenen in überkritischem Kohlendioxid unter Verzicht auf fluorierte Hilfsstoffe
不使用氟化助剂的氟代烯烃在超临界二氧化碳中的自由基共聚
- 批准号:
59799421 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Explainable machine learning for electrification of everything
可解释的机器学习,实现万物电气化
- 批准号:
LP230100439 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
An Explainable Machine Learning Platform for Single Cell Data Analysis
用于单细胞数据分析的可解释机器学习平台
- 批准号:
2313865 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A machine learning framework for trustworthy bio-medical risk factor identification – robust, explainable, and human-centred detection of endo- and phenotypes in lung cancer
用于识别值得信赖的生物医学风险因素的机器学习框架——对肺癌的内型和表型进行稳健、可解释且以人为本的检测
- 批准号:
10068410 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Conference: Toward Explainable, Reliable, and Sustainable Machine Learning for Signal and Data Science
会议:迈向信号和数据科学的可解释、可靠和可持续的机器学习
- 批准号:
2321063 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Development of an Explainable Machine Learning Method to Predict Disease Risk from Genotype
开发一种可解释的机器学习方法来根据基因型预测疾病风险
- 批准号:
22KJ0657 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Data-efficient and explainable machine learning
数据高效且可解释的机器学习
- 批准号:
2644086 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Explainable Machine learning models for AI native radio access technologies (XAI-RAT)
AI 原生无线电接入技术 (XAI-RAT) 的可解释机器学习模型
- 批准号:
RGPIN-2022-04645 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Explainable Machine Learning Models For Predicting Malicious Uniform Resource Locators
用于预测恶意统一资源定位器的可解释机器学习模型
- 批准号:
575554-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's