Study of variable selection in multivariate methods without external variables and development of variable selection software
无外变量多元方法变量选择研究及变量选择软件开发
基本信息
- 批准号:14580352
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We study variable selection in multivariate methods without external variables such as principal component analysis (PCA), factor analysis (FA) and correspondence analysis (CA). In this study we discuss the followings.1.Existing methods of variable selection in multivariate methods without external variables are collected from literatures. They are reviewed and then published as overviews of variable selection in our papers and on the web (see 4)2.New selection criteria in PCA, FA and CA are proposed. In PCA modified principal component as a selection criterion is evaluated, information on how many variables should be used is discussed using computer-intensive methods, and a selection criterion in the sense of regression is proposed and evaluated by AIC. In FA, criteria using RV-coefficient to evaluate the closeness between a configuration of factor scores based on all variables and one on selected variables is considered. In CA, a selection criterion using RV-coefficient for the closeness on two case scores and criteria using ordinary goodness of fit in CA are discussed.3.Applying the proposed criteria to real data sets, they are found that every criterion can be used in the real situations and that selection procedures such as forward-backward stepwise selection provide similar results to all possible selection.4.Variable selection environment"VASMM"(VAriable Selection in Multivariate Methods) is established on the web (http://mo161.soci.ous.ae.jp/vasmm/) to provide information on variable selection in multivariate methods without external variables and on-line selection function. Macros for general statistical packages such as R and XploRe are developed. Using these tools variable selection can be performed anytime and anywhere.
我们研究无外部变量的多变量方法中的变量选择,例如主成分分析(PCA)、因子分析(FA)和对应分析(CA)。在本研究中我们讨论以下内容: 1.无外部变量的多元方法中现有的变量选择方法是从文献中收集的。它们经过审查,然后作为变量选择的概述发布在我们的论文和网络上(参见 4)2。提出了 PCA、FA 和 CA 中的新选择标准。在 PCA 修改主成分作为选择标准进行评估时,使用计算机密集方法讨论应使用多少变量的信息,并提出回归意义上的选择标准并通过 AIC 进行评估。在 FA 中,考虑使用 RV 系数来评估基于所有变量的因子得分配置与基于选定变量的因子得分配置之间的接近度的标准。在CA中,讨论了使用RV系数表示两个案例得分接近度的选择标准和CA中使用普通拟合优度的标准。3.将所提出的标准应用于实际数据集,发现每个标准都可以在实际情况中使用,并且诸如向前向后逐步选择之类的选择过程为所有可能的选择提供了相似的结果。4.变量选择环境“VASMM”(多元方法中的变量选择) 建立在网络上(http://mo161.soci.ous.ae.jp/vasmm/),提供多变量方法中变量选择的信息,无需外部变量和在线选择功能。开发了用于 R 和 XploRe 等通用统计包的宏。使用这些工具可以随时随地进行变量选择。
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Orthogonal score estimation with variable selection multivariate methods.
使用变量选择多变量方法进行正交分数估计。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Mori;Y;Fueda;K.;Iizuka;M.
- 通讯作者:M.
Variable selection in principal component analysis
主成分分析中的变量选择
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Mori;Y.;Iizuka;M.;Tarumi;T.;Tanaka;Y.
- 通讯作者:Y.
Mori, Y, Iizuka, M., Tarumi, T., Tanaka, Y.: "Variable Selection in Principal Component Analysis"XploRe Case Studies, Springer-Verlag. (発行予定). (2003)
Mori, Y、Iizuka, M.、Tarumi, T.、Tanaka, Y.:“主成分分析中的变量选择”XploRe 案例研究,Springer-Verlag(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Statistical software VASMM for variable selection in multivariate methods
用于多变量方法中变量选择的统计软件 VASMM
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Iizuka;M.;Mori;Y.;Tarumi;T.;Tanaka;Y.
- 通讯作者:Y.
Orthogonal score estimation with variable selection in multivariate methods.
多变量方法中变量选择的正交得分估计。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Mori;Y.;Fueda;K.;Iizuka;M.
- 通讯作者:M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Yuichi其他文献
MORI Yuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Yuichi', 18)}}的其他基金
Development of computer-aided diagnostic system by using endocytoscopy
利用内吞细胞镜技术开发计算机辅助诊断系统
- 批准号:
25860564 - 财政年份:2013
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Heuristic representation and effective reduction for large scaled and high dimensional information and its computational environments
大规模高维信息及其计算环境的启发式表示和有效约简
- 批准号:
22500265 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of variable selection methods integrated in data analysis and development of interactive system for variable selection
数据分析中集成的变量选择方法研究及变量选择交互系统开发
- 批准号:
10680321 - 财政年份:1998
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanism for inherited thyroxine-binding globulin excess and isolated growth hormone deficiency
遗传性甲状腺素结合球蛋白过多和孤立性生长激素缺乏的分子机制
- 批准号:
09671082 - 财政年份:1997
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanism for inherited thyroxine-binding globulin excess and isolated growth hormone deficiency
遗传性甲状腺素结合球蛋白过多和孤立性生长激素缺乏的分子机制
- 批准号:
07671123 - 财政年份:1995
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of thyroxine-binding globulin (TBG) gene regulation and inherited TGB abnormalities
甲状腺素结合球蛋白 (TBG) 基因调控和遗传性 TGB 异常分析
- 批准号:
04671468 - 财政年份:1992
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152661 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152704 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Collaborative Research: Randomized Numerical Linear Algebra for Large Scale Inversion, Sparse Principal Component Analysis, and Applications
合作研究:大规模反演的随机数值线性代数、稀疏主成分分析及应用
- 批准号:
2152687 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
- 批准号:
535113-2019 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Establishment of molecular design guidelines for enzyme mutants by principal component analysis aiming at improving enzyme electrochemical reaction
通过主成分分析建立酶突变体分子设计指南,旨在改善酶电化学反应
- 批准号:
21K14782 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Orthonormal principal component analysis for categorical data and its applications
分类数据正交主成分分析的发展及其应用
- 批准号:
20K03303 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
- 批准号:
535113-2019 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Postgraduate Scholarships - Doctoral
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Studentship Programs
Kernel principal component analysis in high dimension, low sample size and its applications
高维、小样本核主成分分析及其应用
- 批准号:
19J10175 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of an Injury Prediction Tool using Principal Component Analysis
使用主成分分析开发伤害预测工具
- 批准号:
535113-2019 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Postgraduate Scholarships - Doctoral