Study on subrings of polynomial rings
多项式环的子环研究
基本信息
- 批准号:16540018
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of the study is to consider the following problem on subrings A of a polynomial ring in n-variables over a commutative ring R :(1) Find conditions for A to be finitely generated over R.(2) Find conditions for A to be a polynomial ring or an A^<[r]->fibration over R.For the first problem, in collaboration with Dr.Amartya K.Dutta, I investigated the case where R is a discrete valuation ring and n=1, and gave a condition for the closed fiber of A over R to be finitely generated. In connection with this result, I studied Noetherian subrings A of a polynomial ring in one variable over a unique factorization domain R, and gave a condition for A to be finitely generated over R. Furthermore I proved that, under this condition, A is a polynomial ring.For the problem (2), I investigated a faithfully flat integral domain A over a unique factorization domain R such that generic and codimension one fibers of A over R are polynomial rings in one variable. I proved that such A is a direct limit of certain algebras, and using this result I gave a condition for A to be a polynomial ring.Concerning the problem (2), I studied the following problem with Professor T.Asanuma (Toyama University) :Let R be a valuation ring with quotient field K and let V be a valuation ring of an algebraic function field K(x,y) in one variable over K such that V dominates R. Find out the algebraic structure of the residue field of V.For this problem, we investigated the case where K(x,y) is a hyperelliptic function field defined by y^2=x^n+ax+b, and proved that among the valuation rings V of K(x,y) dominating R, there exists at most one V such that the residue field of V is not a rational function field in one variable over the residue field of R. Furthermore, for such V, we determined the defining equation of the residue field of V.
本文研究交换环R上n元多项式环的子环A的下列问题:(1)求A在R上生成的条件。(2)对于第一个问题,我与Amartya K.Dutta博士合作,研究了R是离散赋值环且n=1的情况,并给出了R上A的闭纤维是n-生成的条件。结合这个结果,研究了唯一分解整环R上的一元多项式环的Noether子环A,并给出了A在R上生成的一个条件.对于问题(2),研究了唯一分解整环R上的忠实平坦整环A,使得R上A的通有和余维为1的纤维是单变量多项式环.关于问题(2),我与浅沼教授(富山大学)研究了以下问题:设R是具有商域K的赋值环,V是K上的一元代数函数域K(x,y)的赋值环,使得V支配R。对于这个问题,我们研究了K(x,y)是由y ^2 =x^n+ax+B定义的超椭圆函数域的情形,证明了在K(x,y)控制R的赋值环V中,至多存在一个V使得V的剩余域不是R的剩余域上的一元有理函数域.进一步,对这样的V,我们确定了V的剩余域的定义方程。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Generic fibrations by A^1 and A^* over discrete valuation rings
A^1 和 A^* 在离散评估环上的通用纤维
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Asanuma;N.Onoda
- 通讯作者:N.Onoda
Commutative group algebras generated by idempotents
由幂等生成的交换群代数
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.Kawai;N.Onoda
- 通讯作者:N.Onoda
Generic fibrations by affine curves over discrete valuation rings
离散评估环上仿射曲线的一般纤维
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Asanuma;N.Onoda
- 通讯作者:N.Onoda
Idealizers, Complete Integral Closures and Almost Pseudo-valuation Domains
理想化者、完全积分闭包和几乎伪估值域
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Onoda;T.Sugatani;et al.
- 通讯作者:et al.
Valuation rings of algebraic function fields in one variable
一个变量中代数函数域的评估环
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:浅沼照雄;小野田信春
- 通讯作者:小野田信春
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ONODA Nobuharu其他文献
ONODA Nobuharu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ONODA Nobuharu', 18)}}的其他基金
Commutative algebraic approach to the study of affine algebraic geometry focused on fibrations
研究以纤维为中心的仿射代数几何的交换代数方法
- 批准号:
21540034 - 财政年份:2009
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of affine fibrations
仿射纤维的研究
- 批准号:
19540018 - 财政年份:2007
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
A cluster randomized controlled trial to evaluate pharmacy-based health promotion program to improve blood pressure control in Bangladesh, India and Pakistan
一项整群随机对照试验,旨在评估孟加拉国、印度和巴基斯坦基于药房的健康促进计划,以改善血压控制
- 批准号:
23K24566 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The properties, mechanisms, and hazards of interplate and intraplate earthquakes in India
印度板间和板内地震的性质、机制和危害
- 批准号:
NE/Z503484/1 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Research Grant
ePowerCart - Affordable Mobile Clean Energy for Remote Communities in Rural Sub-Saharan Africa and India
ePowerCart - 为撒哈拉以南非洲和印度农村偏远社区提供经济实惠的移动清洁能源
- 批准号:
10076185 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Collaborative R&D
YWSUD: Enhancing the voice of young women journeying through and beyond problematic substance use: Reverse innovation insights from India to the UK
YWSUD:增强年轻女性在经历和超越有问题的物质使用过程中的声音:从印度到英国的逆向创新见解
- 批准号:
EP/Y027655/1 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Fellowship
Quantifying earthquake hazard and enhancing resilience in India
量化印度的地震危害并增强复原力
- 批准号:
NE/Z503514/1 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Research Grant
Early-stage development of a complex, community-based intervention to improve women's perinatal health in rural communities in India
早期开发复杂的、基于社区的干预措施,以改善印度农村社区妇女的围产期健康
- 批准号:
MR/Y503319/1 - 财政年份:2024
- 资助金额:
$ 0.64万 - 项目类别:
Research Grant
Applicability and scalability of a sustainable re-construction framework for seismic-prone heritage areas of Gujarat, India.
印度古吉拉特邦地震多发遗产地区可持续重建框架的适用性和可扩展性。
- 批准号:
AH/X006832/2 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Research Grant
An Ethnographic Study of the Indigenous Museum Movement of Arunachal Pradesh, India (Provisional Project Title)
印度阿鲁纳恰尔邦土著博物馆运动的民族志研究(临时项目名称)
- 批准号:
2878176 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Studentship
Digital Space and Hindu Religiosity in India: Negotiation & Contestation in Everyday Life
印度的数字空间和印度教宗教信仰:谈判
- 批准号:
2882271 - 财政年份:2023
- 资助金额:
$ 0.64万 - 项目类别:
Studentship














{{item.name}}会员




