Topology of nonintegrable plane fields

不可积平面场的拓扑

基本信息

  • 批准号:
    16540053
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The purpose of this research was to study nonintegrable plane fields from the topological viewpoint and clarify their global behavior.First, we considered the rigidity of loops tangent to Engel plane fields. Given a characteristic curve with the initial point being fixed, we completely determined how the terminal point of the curve can vary by small perturbations of the curve in the space of tangential curves to the plane field. Especially, we obtained the following: The trace of terminal points under perturbations becomes an open set if and only if the developing image of the curve with respect to the canonical projective structure coincides with the whole projective line. As an application of this result we got the following: Any non-affine characteristic loop is non-rigid. We also showed that every 1-dimensional projective structure of the circle can be realized as the canonical projective structure of some characteristic loop in some Engel manifold.Next, we studied the rigidity in higher dimensions. We showed that maximal integral submanifolds of the symbol plane fields on contact manifolds of higher orders are always locally rigid. We also produced an example of a rigid torus in some manifold endowed with a nonintegrable plane field.Thirdly, we tried to generalize the Ghys-Langevin-Walczak geometric entropy of foliations to the nonintegrable cases. To define an entropy, we need to use integral curves. We recognized that if we exclusively use integral curves with bounded geometry we are able to define a notion of entropy for nonintegrable plane fields.Parts of these results have been published in the proceedings of the international conference FOLIATIONS 2005, under the title : On rigidity of submanifold a tangent to nonintegrable foliations.
本研究的目的是从拓扑学的观点来研究不可积平面场,并阐明它们的整体行为。首先,我们考虑了与恩格尔平面场相切的环的刚性。给定一条初始点固定的特征曲线,我们完全确定了曲线的端点如何在平面场的切向曲线空间中通过曲线的小扰动而变化。特别地,我们得到了以下结果:端点的迹在扰动下成为开集当且仅当曲线关于标准射影结构的发展像与整个射影线重合。作为这一结果的应用,我们得到:任何非仿射特征环都是非刚性的。我们还证明了圆的每一个1维射影结构都可以实现为Engel流形中某个特征环的正则射影结构。证明了高阶切触流形上符号平面场的极大积分子流形总是局部刚性的。第三,我们尝试将叶理的Gestival-Langevin-Walczak几何熵推广到不可积的情形。为了定义熵,我们需要使用积分曲线。我们认识到,如果我们专门使用积分曲线与有界几何,我们能够定义一个概念的熵为nonintegrable plane fields.Parts这些结果已发表在会议论文集的国际会议叶2005年,标题下:对刚性的子流形切线nonintegrable叶。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the group of foliation preserving diffeomorphisms
关于保叶微分同胚群
Stability Properties of Linear Volterra Integrodifferential Equations in a Banach Space
  • DOI:
    10.1619/fesi.48.367
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y. Hino;S. Murakami
  • 通讯作者:
    Y. Hino;S. Murakami
Regular projectively Anosov flows on the Seifert fibered 3-manifolds
Seifert 纤维 3 流形上的常规投影 Anosov 流
On the Hodge conjecture and the Tate conjecture for the Hilbert schemes of an abelian surface
关于阿贝尔曲面希尔伯特方案的霍奇猜想和泰特猜想
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Nishio;N. Suzuki and M. Yamada;K. Sugiyama
  • 通讯作者:
    K. Sugiyama
Real hypersurfaces in non-flat complex space forms concerned with the structure Jacobi operator and Ricci tensor
与雅可比算子和里奇张量结构有关的非平复空间形式中的实超曲面
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

INABA Takashi其他文献

INABA Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('INABA Takashi', 18)}}的其他基金

Flows and foliations subordinate to nonintegrable plane fields
流和叶理从属于不可积平面场
  • 批准号:
    23540071
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
TOPOLOGICAL AND DYNAMICAL STUDY OF NON-INTEGRABLE DISTRIBUTIONS
不可积分布的拓扑和动力学研究
  • 批准号:
    19540066
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
  • 批准号:
    14540064
  • 财政年份:
    2002
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of minimal sets in differentiable flows and foliations
可微流和叶状结构中最小集的研究
  • 批准号:
    11640062
  • 财政年份:
    1999
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A topological study of generalized dynamical systems
广义动力系统的拓扑研究
  • 批准号:
    09640090
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Foliations and Geometric Structures
叶状结构和几何结构
  • 批准号:
    02640015
  • 财政年份:
    1990
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了