Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
基本信息
- 批准号:14540064
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
An Engel structure is a maximally non-integrable 2-dimensional plane field on a 4-dimensional manifold. In this research we investigated global properties of Engel structures from the viewpoint of topology. In particular, we paid attention to the characteristic 1-dimensional foliations canonically associated to Engel structures. First, we considered the following problem posed by Gershkovich : Does there exist an Engel structure on the 4-dimensional Euclidean space whose characteristic foliation admits a compact leaf ? We affirmatively solved this problem by constructing a concrete example. We also applied the construction to obtaining Engel structures on other open 4-manifolds. This result was published in Bulletin of the Australian Mathematical Society. Next, P.Walczak, the foreign joint investigator of this research, constructed an Engel structure using an Anosov flow. The head investigator remarked that this Engel structure is essentially new. Namely, it is not isotopic to any other known examples. Thirdly, we sought 1-dimensional transversely parallelizable foliations on 4-dimensional manifolds which cannot be topologically conjugate to the characteristic foliation of any Engel structure. It is known that a characteristic foliation admits a tangential projective structure and transverse contact structure. We observed the following fact : If a compact leaf of a characteristic foliation has finite holonomy, then the projective. structure of the leaf is not affine. Using this fact we found a l-dimensional transversely parallelizable foliation which is not topologically conjugate to the characteristic foliation of any Engel structure. Finally, we initiated the study of generalizing the rigidity property of characteristic foliations of Engel structures to the cases of higher dimensional plane fields.
恩格尔结构是四维流形上的最大不可积二维平面场。本文从拓扑学的角度研究了Engel结构的全局性质。特别是,我们注意到典型的1维叶理与恩格尔结构。首先,我们考虑了Gershkovich提出的以下问题:是否存在恩格尔结构的4维欧氏空间的特征叶承认一个紧凑的叶?我们通过构造一个具体的例子,肯定地解决了这个问题。我们也将这种构造应用于其它开4-流形上的Engel结构。这一结果发表在《澳大利亚数学学会公报》上。接下来,本研究的外国联合研究员P. Walczak使用Anosov流构建了恩格尔结构。首席研究员说,这种恩格尔结构基本上是新的。也就是说,它与任何其他已知的例子都不是同位素。第三,我们在4维流形上寻找1维横向可平行的叶理,这些叶理不能与任何恩格尔结构的特征叶理拓扑共轭。已知特征叶理具有切向投影构造和横向接触构造。我们观察到以下事实:如果一个紧凑的叶的特征叶理有有限的holonomy,那么投射。叶的结构不是仿射的。利用这一事实,我们发现了一个l维横向平行叶理,这是不是拓扑共轭的特征叶理的任何恩格尔结构。最后,我们开始了将恩格尔结构的特征叶理的刚性性质推广到高维平面场的研究。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Daijiro Fukuda, Ken'ichi Kuga: "Twisted quantum doubles"International J.Math.Math.Sci.. (印刷中).
Daijiro Fukuda、Kenichi Kuga:“扭曲的量子双打”International J.Math.Math.Sci..(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Inaba: "Open Engel manifolds admitting compact characteristic leaves"Bull.Australian Math.Soc.. 68. 213-219 (2003)
Takashi Inaba:“开放恩格尔流形承认紧凑特征叶”Bull.Australian Math.Soc.. 68. 213-219 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeo Noda, Takashi Tsuboi: "Regular projectively Anosov flows without compact leaves"Foliations : geometry and dynamics, World Sci.. 403-419 (2002)
Takeo Noda,Takashi Tsuboi:“没有紧凑叶子的规则射影阿诺索夫流”Foliations:几何和动力学,世界科学.. 403-419 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shin Satoh: "Surface diagrams of twist-spun 2-knots"J.Knot Theory Ramifications. 11. 413-430 (2002)
Shin Satoh:“捻纺 2 节的表面图”J.Knot 理论分支。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Daijiro Fukuda, Ken'ichi Kuga: "Twisted quantum doubles"International J.Math Math Sci.. (to appear).
Daijiro Fukuda、Kenichi Kuga:“扭曲的量子双打”International J.Math Math Sci..(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INABA Takashi其他文献
INABA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INABA Takashi', 18)}}的其他基金
Flows and foliations subordinate to nonintegrable plane fields
流和叶理从属于不可积平面场
- 批准号:
23540071 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TOPOLOGICAL AND DYNAMICAL STUDY OF NON-INTEGRABLE DISTRIBUTIONS
不可积分布的拓扑和动力学研究
- 批准号:
19540066 - 财政年份:2007
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of nonintegrable plane fields
不可积平面场的拓扑
- 批准号:
16540053 - 财政年份:2004
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of minimal sets in differentiable flows and foliations
可微流和叶状结构中最小集的研究
- 批准号:
11640062 - 财政年份:1999
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A topological study of generalized dynamical systems
广义动力系统的拓扑研究
- 批准号:
09640090 - 财政年份:1997
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Foliations and Geometric Structures
叶状结构和几何结构
- 批准号:
02640015 - 财政年份:1990
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




