Foliations and Geometric Structures
叶状结构和几何结构
基本信息
- 批准号:02640015
- 负责人:
- 金额:$ 0.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1990
- 资助国家:日本
- 起止时间:1990 至 1991
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There are two natural ways to introduce geometric structures into foliations. One is to introduce them in the direction transverse to the leaves, and the other is to do so in the direction tangent to the leaves. The former way has already been studied very much by many people, but it seems that works about the latter way are not so many in the literature.In this research, we investigated these both types of geometric structures on foliations, mainly from the viewpoint of differential topology. Firstly, as for the transverse geometric structures, we studied co-dimension one foliations with transverse projective structure. We clarified the relation between the global holonomy group and the topological properties of the foliations. Furthermore, we showed that a transversely projective foliation cannot have exceptional leaves if the ambient manifold has amenable fundamental group. Secondly, as for the tangential geometric structures, we studied(1)tangentially affine foliations and(2)tangentially holomorphic foliations : (1)Note that tangentially affine foliations appear as Lagrangian foliations on symplectic manifolds. We determined the space of all leafwise affine, functions on a tangentially affine foliation on the torus. We also proved that the three dimensional sphere does not admit any co-dimension one tangentially affine foliation. (2)A Levi-flat real hypersurface in a complex surface has a tangentially holomorphic foliation, which is usually called the Levi foliation. We obtained some topological properties of compact Levi-flat hypersurfaces by investigating the holonomy of total leaves in their Levi foliations. In particular, we showed that the three dimensional sphere cannot be embedded as a Levi-flat hypersurface. This result is applied to two dimensional complex dynamical systems.
有两种自然的方式将几何结构引入叶理。一种是在叶片的横向引入它们,另一种是在叶片的切线方向上这样做。前一种方法已经被很多人研究过了,但关于后一种方法的研究工作似乎并不多,本文主要从微分拓扑的角度研究了叶理上的这两种几何结构。首先,在横截几何结构方面,我们研究了具有横截射影结构的余维1叶理。阐明了整体完整群与叶理拓扑性质之间的关系。此外,我们还证明了如果周围流形具有顺从基本群,则横投射叶理不可能有例外叶。其次,对于切几何结构,我们研究了(1)切仿射叶理和(2)切全纯叶理:(1)注意,切仿射叶理表现为辛流形上的Lagrange叶理。我们确定了环面上切向仿射叶理上的所有叶向仿射函数的空间。我们还证明了三维球面不允许任何余维1切仿射叶理。(2)A复曲面中的Levi平坦真实的超曲面具有切向全纯叶理,通常称为Levi叶理。通过研究紧致Levi-平坦超曲面的Levi叶状结构中全叶的完整性,得到了紧致Levi-平坦超曲面的一些拓扑性质。特别地,我们证明了三维球面不能嵌入为列维平坦超曲面。这一结果适用于二维复杂动力系统。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tetsuya Ando: "On the normal bundle of P' in the higher dimeusinal projective variety" American J. Math.113. 949-961 (1991)
Tetsuya Ando:“论高维射影簇中 P 的法束”American J. Math.113。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Inaba and Shigenori Matsumoto: "Nonsingular expansive flows on 3ーmemfolds and foliations with circle prong singularities" Japan.J.Math.16. 329-340 (1990)
Takashi Inaba 和 Shigenori Matsumoto:“具有圆叉奇点的 3-memfolds 和叶状结构上的非奇异膨胀流”Japan.J.Math.16 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sohei Nozawa: "On groups with a selfーcentralizing Sylow pーsubgroup" J.College of Arts and Sci.Bー23. (1990)
Sohei Nozawa:“关于具有自中心 Sylow p 子群的群”J.艺术与科学学院.B-23 (1990)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Inaba and Shigenori Matsumoto: "Resilient leaves in transversely projective foliations" J.Fac.Sci.Univ.Tokyo. 37. 89-101 (1990)
Takashi Inaba 和 Shigenori Matsumoto:“横向投影叶状结构中的弹性叶子”J.Fac.Sci.Univ.Tokyo。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
D.E.Barrett and Takashi Inaba: "On the topology o compact smooth three dimensinal Levi-flat bypersurfaces"
D.E.Barrett 和 Takashi Inaba:“关于紧凑光滑的三维列维平面副表面的拓扑结构”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INABA Takashi其他文献
INABA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INABA Takashi', 18)}}的其他基金
Flows and foliations subordinate to nonintegrable plane fields
流和叶理从属于不可积平面场
- 批准号:
23540071 - 财政年份:2011
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TOPOLOGICAL AND DYNAMICAL STUDY OF NON-INTEGRABLE DISTRIBUTIONS
不可积分布的拓扑和动力学研究
- 批准号:
19540066 - 财政年份:2007
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of nonintegrable plane fields
不可积平面场的拓扑
- 批准号:
16540053 - 财政年份:2004
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
- 批准号:
14540064 - 财政年份:2002
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of minimal sets in differentiable flows and foliations
可微流和叶状结构中最小集的研究
- 批准号:
11640062 - 财政年份:1999
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A topological study of generalized dynamical systems
广义动力系统的拓扑研究
- 批准号:
09640090 - 财政年份:1997
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Studies on topological and geometric structure analysis and visualization of spatio-temporal data
时空数据拓扑几何结构分析与可视化研究
- 批准号:
23K11020 - 财政年份:2023
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel statistical methods for data with non-Euclidean geometric structure
非欧几何结构数据的新颖统计方法
- 批准号:
DP220102232 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Projects
Geometric structure of integrable dynamical systems
可积动力系统的几何结构
- 批准号:
22K03383 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10445980 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10798457 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
The role of geometric structure in avoidance of oxygen rebound to enable aliphatic halogenation and oxacyclization by non-heme Fe(IV)-oxo (ferryl) complexes
几何结构在避免氧反弹以实现非血红素 Fe(IV)-氧代(铁基)络合物的脂肪族卤化和氧环化中的作用
- 批准号:
10701682 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Geometric structure of mind-body synchronization created by interpersonal movement
人际运动创造的身心同步的几何结构
- 批准号:
22K19727 - 财政年份:2022
- 资助金额:
$ 0.96万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Learning and Analysing Discrete Geometric Structure in Statistical Models
学习和分析统计模型中的离散几何结构
- 批准号:
2602130 - 财政年份:2021
- 资助金额:
$ 0.96万 - 项目类别:
Studentship
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
- 批准号:
RGPIN-2017-05440 - 财政年份:2021
- 资助金额:
$ 0.96万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




