A topological study of generalized dynamical systems
广义动力系统的拓扑研究
基本信息
- 批准号:09640090
- 负责人:
- 金额:$ 1.79万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By generalized dynamical systems, we mean a wide class of systems including classical dynamical systems, foliations, pseudogroups and relations. In this research we tried to extend various notions and theorems in classical dynamical systems to generalized systems. The results obtained are as follows.1. The Reeb foliation and Anosov foliations have the pseudoleaf tracing property.2. Expansive foliations with the pseudoleaf tracing property are semi-stable (This is a generaliza- tion of Bowen-Walters theorem in classical dynamical systems).3. A group action has the pseudo-orbit tracing property if and only if its suspension foliation has the pseudoleaf tracing property.4. A group action has the semi-stability or the expansivity if and only if its suspension foliation has the same property.5. We recognized that the notion of the center of mass (defined by Cheeger) is useful in the construction of a pseudoleaf from a given countable subset in the ambient manifold.6. It seems that the growth of the number of compact leaves cannot be estimated from above by the geometric entropy. We are now trying to produce a counterexample.7, In the case of foliations it seems that the stability does not imply the pseudoleaf tracing property.These results will be published in Tokyo J.Math. A related result has been published in Erg. Th. Dyn. Sys.We note that the notion of the pseudoleaf (which was introduced in this research) has been applied by Walczak to the new definition of the geometric entropy and the existence of virtual leaves.Hino investigated the stability of processes. Koshikawa studied the cut-and-pasting method of group actions. And Takagi studied the geometry of real hypersurfaces in the complex projective spaces.
广义动力系统是指包括经典动力系统、叶、伪群和关系在内的一类广泛的系统。在本研究中,我们尝试将经典动力系统中的各种概念和定理推广到广义系统。得到的结果如下:1。Reeb叶理和Anosov叶理具有伪叶示踪性。具有伪叶跟踪性质的膨胀叶是半稳定的(这是经典动力系统中Bowen-Walters定理的推广)。当且仅当一个群作用的悬浮叶理具有伪轨道跟踪性质时,该群作用才具有伪轨道跟踪性质。群作用具有半稳定性或扩张性当且仅当它的悬浮叶理具有相同的性质。我们认识到质心的概念(由Cheeger定义)在从环境流形中的给定可数子集构造伪叶时是有用的。似乎密实叶数的增长不能由上面的几何熵来估计。我们现在正试图提出一个反例。在叶面的情况下,稳定性似乎并不意味着假叶的追踪性质。这些结果将发表在东京数学杂志上。相关的研究结果已发表在《Erg》杂志上。Th。直流发电机系统。我们注意到,Walczak将伪叶的概念(在本研究中引入的)应用于几何熵的新定义和虚拟叶的存在。Hino研究了工艺的稳定性。Koshikawa研究了群体行为的剪切粘贴方法。Takagi研究了复射影空间中实超曲面的几何。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshiyuki Hino and Satoru Murakami: "A generalization of processes and stabilities in abstract functional differential equations" Funkc.Ekvac.41-2. 235-255 (1998)
Yoshiyuki Hino 和 Satoru Murakami:“抽象函数微分方程中过程和稳定性的概括”Funkc.Ekvac.41-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I-B.Kim,B-H.Kim & Ryoichi Takagi: "The rigidity for real hypersurfaces in a conplex projedive space" Tohoku Math.J.50・4. 531-536 (1998)
I-B.Kim、B-H.Kim 和 Ryoichi Takagi:“复杂投影空间中真实超曲面的刚性”Tohoku Math.J.50・4 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Inaba: "An example of a flow on a non-compact surface which has no minimal set" Erg.Th.Dyn.Sys.19-1. 31-33 (1999)
Takashi Inaba:“没有最小集的非紧表面上的流动示例”Erg.Th.Dyn.Sys.19-1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.J.Shin and Ryoichi Takagi: "On almost parallel submanifolds in S^<2n+1>" Kyungpook Math.J.37-1. 175-180 (1997)
Y.J.Shin 和 Ryoichi Takagi:“关于 S^<2n 1> 中的几乎平行子流形”Kyungpook Math.J.37-1。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Kurihara & Ryoichi Takagi: "A note on the type number of real hypersurfaces in Pn(C)" Tsukuba J.Math.22・3(発表予定). (1998)
H.Kurihara & Ryoichi Takagi:“关于 Pn(C) 中真实超曲面的类型数的注释”Tsukuba J.Math.22·3(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
INABA Takashi其他文献
INABA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('INABA Takashi', 18)}}的其他基金
Flows and foliations subordinate to nonintegrable plane fields
流和叶理从属于不可积平面场
- 批准号:
23540071 - 财政年份:2011
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
TOPOLOGICAL AND DYNAMICAL STUDY OF NON-INTEGRABLE DISTRIBUTIONS
不可积分布的拓扑和动力学研究
- 批准号:
19540066 - 财政年份:2007
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of nonintegrable plane fields
不可积平面场的拓扑
- 批准号:
16540053 - 财政年份:2004
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topological study of Engel structures and its characteristic foliations
恩格尔结构及其特征叶状结构的拓扑研究
- 批准号:
14540064 - 财政年份:2002
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of minimal sets in differentiable flows and foliations
可微流和叶状结构中最小集的研究
- 批准号:
11640062 - 财政年份:1999
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Foliations and Geometric Structures
叶状结构和几何结构
- 批准号:
02640015 - 财政年份:1990
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似国自然基金
Teichmüller理论与动力系统
- 批准号:11026124
- 批准年份:2010
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
基于网格法及Foliation条件机理的非线性向量场高维流形计算研究
- 批准号:60872159
- 批准年份:2008
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
CAREER: Pathways of Microplastics Creation: Multi-physics Study of Macroplastic Fragmentation, Foliation, and Fibration
职业:微塑料的产生途径:大塑料破碎、叶状和纤维化的多物理研究
- 批准号:
2245155 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
CAREER: Pathways of Microplastics Creation: Multi-physics Study of Macroplastic Fragmentation, Foliation, and Fibration
职业:微塑料的产生途径:大塑料破碎、叶状和纤维化的多物理研究
- 批准号:
2145137 - 财政年份:2022
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant
Effet de la défoliation par la livrée sur la faune du sol
太阳神兽落叶效应
- 批准号:
549618-2020 - 财政年份:2020
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
The Symplectic Foliation of the Moduli Space of Magnetic Monopoles
磁单极子模空间的辛叶状结构
- 批准号:
552767-2020 - 财政年份:2020
- 资助金额:
$ 1.79万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Effet de la défoliation par la livrée sur la biomasse microbienne du sol en forêt mixte
太阳和森林混合生物质微生物的落叶效应
- 批准号:
549619-2020 - 财政年份:2020
- 资助金额:
$ 1.79万 - 项目类别:
University Undergraduate Student Research Awards
Likelihood analysis for cluster point processes and elucidation of geometric structure of TextilePlot
聚类点过程的似然分析和 TextilePlot 几何结构的阐明
- 批准号:
19K11865 - 财政年份:2019
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The index theorem involved with foliation and diffeomorphism groups
涉及叶状群和微分同胚群的指数定理
- 批准号:
17K05247 - 财政年份:2017
- 资助金额:
$ 1.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 1.79万 - 项目类别:
Continuing Grant
Foliation Theory in Algebraic Geometry
代数几何中的叶层理论
- 批准号:
1339299 - 财政年份:2013
- 资助金额:
$ 1.79万 - 项目类别:
Standard Grant














{{item.name}}会员




