Integral geometry and variational problems in homogeneous spaces

齐次空间中的积分几何和变分问题

基本信息

  • 批准号:
    16540051
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

In the last academic year we established a Crofton formula in Riemannian symmetric spaces by the use of reflective submaifolds, which is totally geodesic. In order to get explicite expression of the Crofton formula we need some geometric invariants of submanifolds. In the case where the head investigator gave an explicit expression of Poincare formula of submanifolds in complex space forms, he introduced a notion of multiple Kahler angle. By the use of the multiple Kahler angle he could obtain an explicit Crofton formula of submanifolds in complex space forms. For the purpose that we extend the class of submanifolds we use in Crofton formula in Riemannian symmetric spaces, we extend the notion of reflective submanifolds to that of weakly reflective submanifolds. Weakly reflective submanifolds are special ones of minimal submanifolds. Some arguments show that austere submanifolds are weakly reflective. In order to get austere submanifolds in the spheres we described a condition for a submanifold to be austere among the orbits of the linear isotropy actions of Riemannian symmetric pairs. As a result of this we obtained a classification of austere orbits in the spheres under the linear isotropy actions. We observed that some of them are invariant under an isometry of the sphere which reverses the submanifold with respect to the normal directions. So we called such submanifolds weakly reflective submanifolds and started our research of weakly reflective submanifolds.
在上一学年,我们利用完全测地的反射子流形,在黎曼对称空间中建立了一个Crofton公式。为了得到Crofton公式的显式表示,我们需要一些子流形的几何不变量。在首席研究员给出了复空间形式下子流形的Poincare公式的显式表示的情况下,他引入了多重Kahler角的概念。利用多重Kahler角,他可以得到复空间形式下子流形的显式Crofton公式。为了在黎曼对称空间中推广Crofton公式中使用的子流形,我们将反射子流形的概念推广到弱反射子流形的概念。弱反射子流形是极小子流形的一种特殊形式。一些论证表明,简约子流形是弱反射的。为了得到球面上的素子流形,我们刻画了黎曼对称对的线性各向同性作用的轨道中的子流形为素子流形的条件。作为结果,我们得到了在线性各向同性作用下球体中的硬轨道的分类。我们观察到,它们中的一些在球面的等距下是不变的,该球面相对于法线方向反转子流形。因此,我们称这种子流形为弱反射子流形,并开始了对弱反射子流形的研究。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformations of super-minimal J-holomorphic curves of a 6-dimensional sphere
6维球体超最小J全纯曲线的变形
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H;Hashimoto
  • 通讯作者:
    Hashimoto
PROJECTIVE GEOMETRY OF FREUDENTHAL'S VARIETIES OF CERTAIN TYPE
  • DOI:
    10.1307/mmj/1100623411
  • 发表时间:
    2004-12
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Hajime Kaji;Osami Yasukura
  • 通讯作者:
    Hajime Kaji;Osami Yasukura
Crofton formulae by reflective submanifolds in complex space forms
复杂空间形式中反射子流形的克罗夫顿公式
Geometry of reflective submanifolds in Riemannian symmetric spaces
黎曼对称空间中反射子流形的几何
Motion of charged particles in homogeneous Kahler and homogeneous Sasakian manifolds
齐次卡勒流形和齐次 Sasakian 流形中带电粒子的运动
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kaji;Yasukura;Kohhei Yamaguchi;Hashimoto;Kohhei Yamaguchi;Ikawa
  • 通讯作者:
    Ikawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TASAKI Hiroyuki其他文献

TASAKI Hiroyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TASAKI Hiroyuki', 18)}}的其他基金

Extension and application of antipodal sets in symmetric spaces
对称空间中对映集的推广及应用
  • 批准号:
    15K04835
  • 财政年份:
    2015
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of antipodal sets in symmetric spaces with its extension and application
对称空间对映集的研究及其推广与应用
  • 批准号:
    24540064
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A research of the farming space in the Late Jomon period
绳文时代后期农耕空间研究
  • 批准号:
    22320157
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Differential geometry and integral geometry in homogeneous spaces and its applications
齐次空间中的微分几何和积分几何及其应用
  • 批准号:
    21540063
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integral geometry in homogeneous spaces and its applications
均匀空间中的积分几何及其应用
  • 批准号:
    18540065
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homogeneous spaces and variational problems
齐次空间和变分问题
  • 批准号:
    14540058
  • 财政年份:
    2002
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Division of labor in the Yayoi age and demonstrative research of a.c.system between groups : An approach from the viewpoint of the earthenware firing residue and stone implement production residue
弥生时代的分工与群体间交流制度的实证研究:从陶器烧制残渣和石器生产残渣的角度看
  • 批准号:
    13610469
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homogeneous spaces and variational problems
齐次空间和变分问题
  • 批准号:
    12640058
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The pottery production and supply system in Yayoi period : An approach from the remains left by the pottery-firing
弥生时代陶器的生产和供应体系:从烧制陶器的遗迹看
  • 批准号:
    09610406
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Microlocal Analysis in Integral Geometry
整体几何中的微局部分析
  • 批准号:
    23K03186
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis of convolution operators on symmetric spaces and its applications to integral geometry and inverse problems
对称空间上卷积算子的几何分析及其在积分几何和反问题中的应用
  • 批准号:
    21K03264
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Integral Geometry: Theory, Implementations, and Applications
职业:积分几何:理论、实现和应用
  • 批准号:
    1943580
  • 财政年份:
    2020
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Convex valuation theory and integral geometry
凸估价理论和积分几何
  • 批准号:
    RGPIN-2016-06764
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Convex valuation theory and integral geometry
凸估价理论和积分几何
  • 批准号:
    RGPIN-2016-06764
  • 财政年份:
    2017
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Perspectives on integral geometry
积分几何的观点
  • 批准号:
    1552349
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Differential Forms in Integral Geometry
积分几何中的微分形式
  • 批准号:
    497356-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Convex valuation theory and integral geometry
凸估价理论和积分几何
  • 批准号:
    RGPIN-2016-06764
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
The Transfer Principle of Integral Geometry and Isoperimetric Inequalities
积分几何传递原理与等周不等式
  • 批准号:
    289866435
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grants
Perspectives on integral geometry
积分几何的观点
  • 批准号:
    1632753
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了