Homogeneous spaces and variational problems
齐次空间和变分问题
基本信息
- 批准号:14540058
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The head investigator introduced the notion "multiple Kahler angle" and showed that we can describe integral geometry of submanifolds in complex projective spaces explicitly by the use of multiple Kahler angle. In the case of the complex projective plane he obtained with Kang more detailed Poincare formula. These Poincare formulae has an application on estimate of the area and the integral of Kahler angle of real surfaces. By this estimate we can get a minimizing solution of a certain variational problem. Moreover the head investigator published Poincare formula of real surfaces and submanifolds of codimension 2. The calculation of this result is obtained by the use of an integral on a Lie group and some symmetric pairsThe head investigator showed that an integral on a Lie group by the use of some symmetric pairs is effective in formulation of Poincare formulae in the other homogeneous spaces. Takahashi, Kang, Sakai and the head investigator has studied integral geometry of almost complex submanifolds in homogeneous almost Hermitian spaces and formulated Poincare formulae of almost complex submanifolds in homogeneous almost Hermitian spaces, which are generalization of classical and fundamental formulae in complex projective spaces obtaind by Santalo. Sakai has generalized these results
首席研究员介绍了“多重Kahler角”的概念,并表明我们可以通过使用多重Kahler角来明确地描述复射影空间中子流形的积分几何。在复射影平面的情况下,他用康氏得到了更详细的庞加莱公式.这些Poincare公式在真实的曲面的面积估计和Kahler角的积分中有应用。通过这种估计,我们可以得到一个特定的变分问题的最小解。此外,首席研究员发表庞加莱公式的真实的表面和子流形的余维2。这个结果的计算是利用李群上的一个积分和一些对称对得到的。研究者指出,利用一些对称对在李群上的积分在其它齐性空间中的Poincare公式的公式化中是有效的。Takahashi,Kang,Sakai等人研究了齐次几乎Hermitian空间中几乎复子流形的积分几何,建立了齐次几乎Hermitian空间中几乎复子流形的Poincare公式,它是Santalo在复射影空间中得到的经典公式和基本公式的推广. Sakai推广了这些结果
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Tasaki: "Generalization of Kahler angle and integral geometry in complex projective spaces II"Math.Nachr.. 252. 106-112 (2003)
H.Tasaki:“复射影空间中卡勒角和积分几何的推广 II”Math.Nachr.. 252. 106-112 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Itoh: "Contact metric 5-manifolds, CR twistor spaces and integrability"Jour. Math. Phys.. 43・7. 3783-3797 (2002)
M.Itoh:“接触度量 5 流形、CR 扭转空间和可积性”数学杂志 43・7(2002)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Tasaki: "Integral geometry under the action of the first symplectic group"Archiv der Mathematik (Basel). 80. 106-112 (2003)
H.Tasaki:“第一辛群作用下的积分几何”Archiv der Mathematik(巴塞尔)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
O.Ikawa: "Hamiltonian dynamics of a charged particle"Hokkaido Math.J.. 32・3. 661-671 (2003)
大井川:“带电粒子的哈密尔顿动力学”Hokkaido Math.J. 32・3(2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Tasaki, Kang: "Integral geometry of real surfaces in the complex projective plane"Geometriae Dedicata. 90. 99-106 (2002)
H.Tasaki, Kang:“复射影平面中真实表面的积分几何”Geometriae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TASAKI Hiroyuki其他文献
TASAKI Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TASAKI Hiroyuki', 18)}}的其他基金
Extension and application of antipodal sets in symmetric spaces
对称空间中对映集的推广及应用
- 批准号:
15K04835 - 财政年份:2015
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of antipodal sets in symmetric spaces with its extension and application
对称空间对映集的研究及其推广与应用
- 批准号:
24540064 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A research of the farming space in the Late Jomon period
绳文时代后期农耕空间研究
- 批准号:
22320157 - 财政年份:2010
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential geometry and integral geometry in homogeneous spaces and its applications
齐次空间中的微分几何和积分几何及其应用
- 批准号:
21540063 - 财政年份:2009
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integral geometry in homogeneous spaces and its applications
均匀空间中的积分几何及其应用
- 批准号:
18540065 - 财政年份:2006
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integral geometry and variational problems in homogeneous spaces
齐次空间中的积分几何和变分问题
- 批准号:
16540051 - 财政年份:2004
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Division of labor in the Yayoi age and demonstrative research of a.c.system between groups : An approach from the viewpoint of the earthenware firing residue and stone implement production residue
弥生时代的分工与群体间交流制度的实证研究:从陶器烧制残渣和石器生产残渣的角度看
- 批准号:
13610469 - 财政年份:2001
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Homogeneous spaces and variational problems
齐次空间和变分问题
- 批准号:
12640058 - 财政年份:2000
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The pottery production and supply system in Yayoi period : An approach from the remains left by the pottery-firing
弥生时代陶器的生产和供应体系:从烧制陶器的遗迹看
- 批准号:
09610406 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Non-Local Variational Problems with Applications to Data Science
非局部变分问题及其在数据科学中的应用
- 批准号:
2307971 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Early Career Researcher Award
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2307273 - 财政年份:2023
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant
Variational Problems with Singularities
奇点变分问题
- 批准号:
RGPIN-2019-05987 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 2.37万 - 项目类别:
Continuing Grant














{{item.name}}会员




