Study of methodology for a posterior error estimation of finite element solutions
有限元解后验误差估计方法的研究
基本信息
- 批准号:16540096
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As a study of methods and techniques for a posteriori error estimation of the finite element method (FEM), we obtained the following results and observations.1. Study of a posteriori error estimation based on the hypercircle method : For Poisson's equation, we have analyzed the above a posteriori method with the mixed FEM and related methods, and verified the results by numerical experiment. Some results were published in an international journal. The present method turns out to require very few error constants but its range of applicability is limited. We also search for its effectiveness in wider problems and non-conforming FEM.2. Estimation of interpolation error constants : We analyzed various interpolation error constants appearing in the constant and conforming linear triangular finite elements. Quantitative evaluation of such constants is essential in a posteriori error estimation and Nakao's numerical verification method. The results were published in international journals. We also perform similar analysis for the non-conforming linear triangle.3. Development and analysis of FEM for electromagnetics : Related to items 1 and 2, we have been studying FEM for electromagnetics. Some results for quadrilateral elements were published in an international journal as an international joint work. We are analyzing Maxwell's eigenvalue problems over axisymmetric domains by the Fourier FEM.4. Study of plate bending FEM : We have studied and published a unification method for the Kirchhoff and Reissner-Mindlin elements in an international journal. We are now studying determination method for the transverse shear forces.5. Study of the discontinuous Galerkin method : We start a posteriori error analysis of the discontinuous Galerkin method. The non-conforming FEM in item 2 is a classical example of such method, and is taken as a starting point of our study.
作为有限元后验误差估计方法和技术的研究,我们得到了以下结果和观察.基于超圆方法的后验误差估计研究:对于Poisson方程,我们用混合有限元法及相关方法对上述后验误差估计方法进行了分析,并通过数值实验对结果进行了验证。一些研究结果发表在一份国际期刊上。目前的方法原来需要很少的误差常数,但其适用范围是有限的。我们还寻找它的有效性,在更广泛的问题和不符合有限元。插值误差常数的估计:分析了常值线性三角形单元和协调线性三角形单元中出现的各种插值误差常数。定量评估这些常数是必不可少的后验误差估计和Nakao的数值验证方法。研究结果发表在国际期刊上。对非协调线性三角形也进行了类似的分析.电磁场有限元法的开发与分析:与第1项和第2项相关,我们一直在研究电磁场有限元法。四边形单元的一些结果作为国际合作成果发表在国际期刊上。我们用傅里叶有限元法分析轴对称区域上的麦克斯韦本征值问题.板弯曲有限元的研究:我们研究了Kirchhoff和Reissner-Mindlin单元的统一方法,并在国际期刊上发表。我们正在研究横向剪力的确定方法.间断Galerkin方法的研究:我们开始间断Galerkin方法的后验误差分析。第2项中的非协调有限元法是这种方法的一个经典例子,并作为我们研究的起点。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EDGE ELEMENT COMPUTATION OF MAXWELL'S EIGENVALUES ON GENERAL QUADRILATERAL MESHES
- DOI:10.1142/s0218202506001145
- 发表时间:2006-02
- 期刊:
- 影响因子:3.5
- 作者:D. Boffi;F. Kikuchi;J. Schöberl
- 通讯作者:D. Boffi;F. Kikuchi;J. Schöberl
岩波 数学辞典 第4版
岩波数学词典第4版
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:F.C.M.Crooks E;N.Dancer;D.Hilhorst;M.Mimura;H.Ninomiya;日本数学会(編)の一部項目を菊地文雄が執筆
- 通讯作者:日本数学会(編)の一部項目を菊地文雄が執筆
Estimation of interpolation error constants for the P0 and P1 triangular finite elements
- DOI:10.1016/j.cma.2006.10.029
- 发表时间:2007-08
- 期刊:
- 影响因子:7.2
- 作者:F. Kikuchi;Xuefeng Liu
- 通讯作者:F. Kikuchi;Xuefeng Liu
Remarks on a posteriori error estimation for finite element solutions
- DOI:10.1016/j.cam.2005.07.031
- 发表时间:2007-02
- 期刊:
- 影响因子:2.4
- 作者:F. Kikuchi;H. Saito
- 通讯作者:F. Kikuchi;H. Saito
Determination of Babuska-Aziz constant for the linear triangular finite element
线性三角形有限元Babuska-Aziz常数的确定
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:菊地文雄;劉雪峰
- 通讯作者:劉雪峰
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIKUCHI Fumio其他文献
KIKUCHI Fumio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIKUCHI Fumio', 18)}}的其他基金
Study of the discontinuous Galerkin methods and their a posteriori error estimates
间断伽辽金方法及其后验误差估计的研究
- 批准号:
19540115 - 财政年份:2007
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Linkage analysis between gene for grain shattering and semi-dwarfing gene and character expression of shattering in rice
水稻落粒基因与半矮化基因连锁分析及落粒性状表达
- 批准号:
01560002 - 财政年份:1989
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
- 批准号:
23K04012 - 财政年份:2023
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
- 批准号:
573136-2022 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
- 批准号:
2795756 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
- 批准号:
22K04278 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
- 批准号:
2207164 - 财政年份:2022
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
- 批准号:
2009366 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
- 批准号:
2012285 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
- 批准号:
20K10160 - 财政年份:2020
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
- 批准号:
19K15078 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
- 批准号:
429491391 - 财政年份:2019
- 资助金额:
$ 1.6万 - 项目类别:
Research Fellowships