Analysis of various amounts charactering scattering phenomena for the elastic surface waves

弹性表面波散射现象的各种表征量分析

基本信息

  • 批准号:
    16540156
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The aim of this research is analyzing the more detailed character of a surface wave based on the formulation of scattering theory to the surface wave by the research representatives of this research. One of the quantity which describes the scattering phenomena of elastic surface waves is in the component of the physical quantity called a "scattering kernel. " Existence of a scattering kernel is shown and the representation formula of it is obtained. The representation formula obtained above is represented by using the generalized eigenfunctions to a free system and a perturbed system. From this formula, the concrete representation of the part describing the scattering phenomena of an elastic surface wave among scattering kernels is obtained. By using this representation, how to interpret scattering of a surface wave as the scattering problem of the hyperbolic equation on an boundary surface is considered. The obtained results in this research are as follows:(1) The concrete representat … More ion linking directly to the phenomenon of propagation of surface waves is given.(2) An approximate solution of the Rayleigh wave for pulling out the information about the singularity of a scattering kernel is constructed.(3) Study for pulling out the information about singularities of the scattering kernel is performed by using the approximate solution. The similarity from a viewpoint of the influence which the singularity of waves has on a scattering kernel is shown among various scattering theories for hyperbolic equations.(4) In steps performing (3), oscillatory integrals of more complicated forms than those appeared in the previous work appeared. About this, more precise estimates than those in the previous works are obtained.The "representation formula of the scattering kernel" obtained in this research includes the contents which renew interpretation of the similar formulae obtained until now. Moreover, through analyzing (1)--(4), it become clear that analysis peculiar to scattering of an elastic surface wave is needed. Less
本研究的目的是在本研究的研究代表对表面波散射理论的阐述的基础上,对表面波的更详细的特性进行分析。描述弹性表面波散射现象的量之一是称为“散射核”的物理量的组成部分。“证明了散射核的存在性,并得到了散射核的表示公式.用广义本征函数表示自由系统和扰动系统的表示式。从这个公式出发,得到了散射核中描述弹性表面波散射现象的部分的具体表示。利用这种表示,考虑如何将表面波的散射解释为边界面上双曲方程的散射问题。本研究取得的主要成果如下:(1)具体表现为: ...更多信息 离子直接链接到表面波的传播现象。(2)本文构造了一种瑞利波近似解,用以提取散射核奇异性的信息。(3)利用近似解进行了提取散射核奇异性信息的研究。从波的奇异性对散射核的影响的观点来看,在双曲方程的各种散射理论之间显示出相似性。(4)在进行(3)的步骤中,出现了比先前工作中出现的形式更复杂的振荡积分。关于这一点,我们得到了比以往工作更精确的估计,我们得到的“散射核表示公式”包含了对迄今为止得到的类似公式重新解释的内容。此外,通过分析(1)-(4),显然需要对弹性表面波的散射进行特有的分析。少

项目成果

期刊论文数量(58)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local energy decay for linear wave equations with variable coefficients.
具有可变系数的线性波动方程的局部能量衰减。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.Sugie;N.Yamaoka;北本 卓也;R.Ikehata
  • 通讯作者:
    R.Ikehata
測度論と実解析の基礎
测度论和实分析基础
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J.Sugie;K.Kimoto;盛田 健彦
  • 通讯作者:
    盛田 健彦
Scattering theory for the elastic wave equation in perturbed half-spaces
扰动半空间弹性波方程的散射理论
Meromorphic extensions of a class of dynamical zeta functions and their special values at the origin.
一类动力学 zeta 函数的亚纯扩展及其在原点的特殊值。
Non decay of the total energy for the wave equation with the dissipative term of spatial anisotropy
具有空间各向异性耗散项的波动方程总能量不衰减
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    川下美潮;川下和日子;曽我日出夫
  • 通讯作者:
    曽我日出夫
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWASHITA Mishio其他文献

KAWASHITA Mishio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWASHITA Mishio', 18)}}的其他基金

Development of Inverse problems via asymptotic analysis -from the point of view of scattering theory
通过渐近分析发展反问题——从散射理论的角度
  • 批准号:
    22540194
  • 财政年份:
    2010
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Method of analysis for scattering of elastic surface waves on boundaries with corners
弹性表面波在有角边界上的散射分析方法
  • 批准号:
    19540183
  • 财政年份:
    2007
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scattering theory for the elastic surface waves
弹性表面波的散射理论
  • 批准号:
    14540176
  • 财政年份:
    2002
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Studentship
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    2204322
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
  • 批准号:
    21K03292
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral and scattering theory with microlocal and semiclassical methods
使用微局域和半经典方法的光谱和散射理论
  • 批准号:
    21K03276
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scattering theory and continuum limits of discrete Schrodinger operators
离散薛定谔算子的散射理论和连续谱极限
  • 批准号:
    21K20337
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了