Research on global properties of solutions of geometric variational problems

几何变分问题解的全局性质研究

基本信息

  • 批准号:
    16540195
  • 负责人:
  • 金额:
    $ 1.86万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

1. We studied critical points of an anisotropic surface energy for immersed surfaces in the euclidean three-space with a volume constraint. We assume that the surface energy satisfies a certain "convexity condition". In this case, the energy is called a constant coefficient elliptic parametric functional, and the critical points are surfaces with constant anisotropic mean curvature (CAMC surfaces). The energy-minimizer is a smooth convex surface which is called the Wulff shape (up to translation and homothety). In the case where the anisotropic surface energy is rotationally invariant, we obtained the following results.(1) We proved that any embedded closed CAMC surface was (up to translation and homothety) the Wulff shape.(2) We studied capillary surfaces for certain rotationally invariant elliptic parametric functionals supported on two horizontal planes separated by a fixed distance. When the wetting energy is nonnegative, we proved the existence and uniqueness of the stable solution. Also, we determined the geometric property of the solution. When the wetting energy is negative, we obtained some criterions for the existence and uniqueness of the stable solution. Also, we obtained some numerical results on this problem.2. We obtained a new method of constructing examples of CAMC surfaces whose surface energy is not necessarily rotationally invariant. It will be useful not only for the study on CAMC surfaces but also for other fields such as crystallography, mathematical biology, and so on.3. Anisotropic Delaunay surfaces are surfaces of revolution with constant anisotropic mean curvature. e showed how the generating curves of such surfaces could be obtained as the trace of a point attached to a curve which was rolled without slipping along a line. This generalizes the classical construction for constant mean curvature surfaces due to Delaunay. Moreover, we characterize anisotropic Delaunay surfaces by using their isothermic self-duality.
1.研究了欧氏三维空间中具有体积约束的浸没表面各向异性表面能的临界点。我们假设表面能满足一定的“凸性条件”。在这种情况下,能量称为常系数椭圆参数泛函,临界点是具有恒定各向异性平均曲率的曲面(CAMC曲面)。能量极小化是一个光滑的凸面,称为Wulff形(平移和齐性)。在各向异性表面能量为旋转不变的情况下,我们得到了以下结果:(1)证明了任何嵌入的闭CAMC曲面(直到平移和齐次)都是Wulff形的。(2)研究了支承在两个相隔一定距离的水平面上的旋转不变椭圆参数泛函的毛细曲面。当润湿能为非负值时,证明了稳定解的存在唯一性。我们还确定了解的几何性质。当润湿能为负时,我们得到了稳定解存在唯一性的一些判据。同时,我们也得到了一些关于这个问题的数值结果。我们得到了一种构造表面能量不一定旋转不变的CAMC曲面的例子的新方法。这不仅对CAMC表面的研究具有重要意义,而且对结晶学、数学生物学等其他领域的研究也具有重要意义。各向异性Delaunay曲面是具有常值各向异性平均曲率的旋转曲面。E说明了这种曲面的生成曲线是如何作为一条曲线上的点的轨迹来获得的,这条曲线是沿着一条直线滚动而不滑动的。这推广了Delaunay关于常平均曲率曲面的经典构造。此外,我们还利用各向异性Delaunay曲面的等温自对偶性刻画了各向异性Delaunay曲面。

项目成果

期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniqueness Theorems for Stable Anisotropic Capillary Surfaces
  • DOI:
    10.1137/060657297
  • 发表时间:
    2007-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miyuki Koiso;B. Palmer
  • 通讯作者:
    Miyuki Koiso;B. Palmer
Geometry and stability of surfaces with constant anisotropic mean curvature
Deformations of Surfaces Preserving Conformal or Similarity Invariants
  • DOI:
    10.1007/978-0-8176-4530-4_4
  • 发表时间:
    2005-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Fujioka;J. Inoguchi
  • 通讯作者:
    A. Fujioka;J. Inoguchi
Bonnet surfaces in four-dimensional space forms
四维空间形式的阀盖表面
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomeoka;K.;A.Fujioka
  • 通讯作者:
    A.Fujioka
Timelike surfaces with harmonic inverse mean curvature
  • DOI:
    10.2969/aspm/05110113
  • 发表时间:
    2005-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Fujioka;J. Inoguchi
  • 通讯作者:
    A. Fujioka;J. Inoguchi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KOISO Miyuki其他文献

Complete flat fronts as hypersurfaces in Euclidean space
欧几里得空间中作为超曲面的完整平面

KOISO Miyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KOISO Miyuki', 18)}}的其他基金

Study on hypersurfaces of constant anisotropic mean curvature with singulalities
具有奇点的常各向异性平均曲率超曲面研究
  • 批准号:
    26610016
  • 财政年份:
    2014
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
New methods on geometric analysis of variational problems for surfaces
曲面变分问题几何分析新方法
  • 批准号:
    25287012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Stability and bifurcation for periodic minimal surfaces and surfaces with constant mean curvature, and applications to other fields
周期极小曲面和平均曲率恒定曲面的稳定性和分岔及其在其他领域的应用
  • 批准号:
    22654009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research on stability and global properties of solutions of geometric variational problems
几何变分问题解的稳定性和全局性质研究
  • 批准号:
    19540217
  • 财政年份:
    2007
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functinal analytic approach to reseaches on deformation and stability of surfaces with constant mean curvature
常平均曲率曲面变形与稳定性研究的函数分析方法
  • 批准号:
    13640211
  • 财政年份:
    2001
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEFORMATION AND STABILITY OF SURFACES WITH CONSTANT MEAN CURVATURE
平均曲率恒定的表面的变形和稳定性
  • 批准号:
    11640200
  • 财政年份:
    1999
  • 资助金额:
    $ 1.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了