DEFORMATION AND STABILITY OF SURFACES WITH CONSTANT MEAN CURVATURE
平均曲率恒定的表面的变形和稳定性
基本信息
- 批准号:11640200
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Let P be a complete surface in the threee-dimensional euclidean space. Each critical point of the area functional, among all immersed surfaces with boundary in P and with a given volume, is called a stationary immersion for supporting surface P.In the special case where P is a plane, we proved that any stable stationary immersion is an embedding onto a hemisphere.2. We studied properties and shapes of nodoids, which are the surfaces of Delaunay (surfaces of revolution with constant mean curvature in the threee-dimensional euclidean space) with self-intersections3. We obtained sufficient conditions for a immersed surface with constant mean curvature (CMC) in the threee-dimensional euclidean space under which it has a CMC-deformation that fixes the boundary. Moreover, we obtained a criterion of the stability for CMC immersions. Both of these are achieved by using the properties of the eigenvalues and the eigenfunctions of the eigenvalue problem associated to the second variation of the area functional. In a certain special case, by combining these results, we obtained a 'visible' way of judging the stability.4. We proved that the well-known second variation formula of the area function for regular minimal surfaces is valid also for generalized minimal surfaces (minimal surfaces with branch points) for 'good' variations.5. We derive sufficient conditions for immersed surfaces with constant mean curvature in three-dimensional space forms to be strongly stable.
1.设P是三维欧氏空间中的完备曲面。在所有边界在P中且具有给定体积的浸入曲面中,面积泛函的每个临界点称为支撑曲面P的稳定浸入.在P是平面的特殊情况下,我们证明了任何稳定的稳定浸入都是到半球上的嵌入.我们研究了具有自相交的Delaunay曲面(三维欧氏空间中具有常平均曲率的旋转曲面)的节点面的性质和形状。本文给出了三维欧氏空间中具有常平均曲率(CMC)的浸入曲面具有固定边界的CMC-变形的充分条件。此外,我们还得到了CMC浸泡稳定性的判据。这两个都是通过使用与面积泛函的第二变分相关联的本征值问题的本征值和本征函数的性质来实现的。在某种特殊情况下,将这些结果结合起来,得到了一种直观的稳定性判断方法.我们证明了著名的正则极小曲面面积函数的二次变分公式对于广义极小曲面(具有分支点的极小曲面)的“好”变分也有效。5.给出了三维空间形式中具有常平均曲率的浸入曲面强稳定的充分条件。
项目成果
期刊论文数量(37)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masatoshi Kokubu: "Hamiltonian systems derived from constant mean curvature surfaces in hyperbolic three-space"Geometriae Dedicata. 77. 253-269 (1999)
Masatoshi Kokubu:“从双曲三空间中的恒定平均曲率表面导出的哈密尔顿系统”Geometriae Dedicata。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyuki koiso: "A note on the stability of minimal surfaces with branch points""Proceedings of the Fifth Pacific Rim Geometry Conference" (July 25-28, 2000, Tohoku University, Japan). (to appear). 8
Miyuki koiso:“关于带有分支点的最小曲面的稳定性的说明”“第五届环太平洋几何会议论文集”(2000年7月25-28日,日本东北大学)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyuki Koiso: "The uniqueness for stable surfaces of constant mean curvature with free boundary on a plane"Bulletin of Kyoto University of Education,Ser.B. No.97. 1-12 (2000)
小矶美幸:“平面上具有自由边界的恒定平均曲率稳定表面的唯一性”京都教育大学通报,Ser.B。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyuki Koiso: "On the surfaces of Delaunay"Bulletin of Kyoto University of Education, Ser.B. 97. 13-33 (2000)
Miyuki Koiso:《On the Surfaces of Delaunay》京都教育大学通报,Ser.B.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Reiko Aiyama: "Kenmotsu type representation formula for surface with prescribed mean curvature in the de Sitter 3-space"Tsukuba Journal of Mathematics. 24. 189-196 (2000)
Reiko Aiyama:“德西特 3 空间中具有规定平均曲率的曲面的 Kenmotsu 型表示公式”筑波数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOISO Miyuki其他文献
Complete flat fronts as hypersurfaces in Euclidean space
欧几里得空间中作为超曲面的完整平面
- DOI:
10.3792/pjaa.94.25 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
HONDA Atsufumi;KOISO Miyuki;SAJI Kentaro;Honda Atsufumi - 通讯作者:
Honda Atsufumi
KOISO Miyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOISO Miyuki', 18)}}的其他基金
Study on hypersurfaces of constant anisotropic mean curvature with singulalities
具有奇点的常各向异性平均曲率超曲面研究
- 批准号:
26610016 - 财政年份:2014
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
New methods on geometric analysis of variational problems for surfaces
曲面变分问题几何分析新方法
- 批准号:
25287012 - 财政年份:2013
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stability and bifurcation for periodic minimal surfaces and surfaces with constant mean curvature, and applications to other fields
周期极小曲面和平均曲率恒定曲面的稳定性和分岔及其在其他领域的应用
- 批准号:
22654009 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research on stability and global properties of solutions of geometric variational problems
几何变分问题解的稳定性和全局性质研究
- 批准号:
19540217 - 财政年份:2007
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on global properties of solutions of geometric variational problems
几何变分问题解的全局性质研究
- 批准号:
16540195 - 财政年份:2004
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functinal analytic approach to reseaches on deformation and stability of surfaces with constant mean curvature
常平均曲率曲面变形与稳定性研究的函数分析方法
- 批准号:
13640211 - 财政年份:2001
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: Computational Design of Multi-functional Minimal-Surface Lattice Structures
合作研究:多功能最小表面晶格结构的计算设计
- 批准号:
2130668 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
ERI: Understanding the Thermomechanical Response of Sandwich Structures with Triply Periodic Minimal Surface
ERI:了解具有三周期最小表面的夹层结构的热机械响应
- 批准号:
2138459 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
- 批准号:
22H01122 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Computational Design of Multi-functional Minimal-Surface Lattice Structures
合作研究:多功能最小表面晶格结构的计算设计
- 批准号:
2130694 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Machine learning-based design of triply periodic minimal surface structures
基于机器学习的三周期最小表面结构设计
- 批准号:
DE210101676 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Early Career Researcher Award
Monitoring the efficacy of minimal surface disturbance approaches
监测最小表面扰动方法的有效性
- 批准号:
537625-2018 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Collaborative Research and Development Grants
Monitoring the efficacy of minimal surface disturbance approaches
监测最小表面扰动方法的有效性
- 批准号:
537625-2018 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Collaborative Research and Development Grants
Elucidation of lipid molecular dynamics on three-dimensional minimal surface and development of innovative lipid cubic method
阐明三维极小表面上的脂质分子动力学并开发创新的脂质立方方法
- 批准号:
17H03038 - 财政年份:2017
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Problems in Mean Curvature Flow and Minimal Surface Theory
平均曲率流和极小曲面理论中的问题
- 批准号:
1609340 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Development of I/I3 Redox Couple Conductive Interface Using Gyroid Minimal Surface
使用 Gyroid 最小表面开发 I/I3 氧化还原电偶导电界面
- 批准号:
25708014 - 财政年份:2013
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Young Scientists (A)