Functinal analytic approach to reseaches on deformation and stability of surfaces with constant mean curvature
常平均曲率曲面变形与稳定性研究的函数分析方法
基本信息
- 批准号:13640211
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1.We studied the variational theory of surfaces whose mean curvature is prescribed to be a linear function of their height above a horizontal plane (PMC surfaces). We developed a flux formula and used it to prove nonexistence results for closed PMC surfaces. The perturbation theory for PMC surfaces was studied. We obtained necessary conditions for the stability of PMC surfaces with planar boundaries.2.We posed a variational problem for surfaces whose solutions are a geometric model for thin films with gravity which is partially supported by a given contour. The energy functional contains surface tension, a gravitational energy and a wetting energy, and the Euler-Lagrange equation can be expressed in terms of the mean curvature of the surface, the curvatures of the free boundary and a few other geometric quantities. Especially, we studied in detail a simple case where the solutions were vertical planar surfaces bounded by two vertical lines. We determined the stability or instability of each solution.3.We studied the geometry of surfaces which are in equilibrium for an anisotropic surface energy with a volume constraint. We obtained the first and second variations and studied the exceptional set of the Gauss map for such surfaces. Also we obtained representation formulas of the equilibrium surfaces of revolution and studied the geometry and stability of these surfaces.
1.研究了平均曲率为水平面以上高度的线性函数的曲面(PMC曲面)的变分理论。我们开发了一个通量公式,并用它来证明不存在的结果,关闭PMC曲面。研究了PMC曲面的摄动理论。我们得到了具有平面边界的PMC曲面稳定的必要条件。2.我们提出了一个曲面的变分问题,其解是一个由给定轮廓部分支撑的重力薄膜的几何模型。能量泛函包含表面张力、重力能和润湿能,欧拉-拉格朗日方程可以用表面的平均曲率、自由边界的曲率和其他一些几何量来表示。特别地,我们详细研究了一个简单的情况下,解决方案是垂直平面由两个垂直线界定。我们确定了每个解的稳定性或不稳定性。3.我们研究了具有体积约束的各向异性表面能的平衡表面的几何形状。我们得到了第一和第二变分,并研究了这类曲面的高斯映射的例外集。得到了旋转平衡曲面的表示公式,并研究了这些曲面的几何性质和稳定性。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Miyuki Koiso: "Deformation and stability of surfaces with constant mean curvature"Tohoku Mathematical Journal. 54. 145-159 (2002)
Miyuki Koiso:“具有恒定平均曲率的曲面的变形和稳定性”东北数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyuki Koiso: "Stability of surfaces with constant mean curvature in three-dimensional space forms"Differential Geometry, Valencia 2001-Proceedings of the International Conference Held to Honor the 60th Birthday of A.M.Naveira, Valencia, July 8-14, 2001(E
Miyuki Koiso:“三维空间形式中具有恒定平均曲率的表面的稳定性”微分几何,巴伦西亚 2001 年 - 为纪念 A.M.Naveira 60 岁生日而举行的国际会议记录,巴伦西亚,2001 年 7 月 8 日至 14 日(E)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Reiko Aiyama: "Lagrangian Surfaces with circle symmetry in the complex two-space"Michigan Mathematical Journal. 発行予定. (2004)
Reiko Aiyama:“复二空间中具有圆形对称性的拉格朗日曲面”,密歇根数学杂志即将出版(2004 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyuki Koiso, Bennett Palmer: "Geometry and stability of bubbles with gravity"Indiana University Matheamtics Journal. (to appear).
Miyuki Koiso,Bennett Palmer:“重力气泡的几何结构和稳定性”印第安纳大学数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Miyuki Koiso, Bennett Palmer: "On a variational problem for soap films with gravity and partially free boundary"Journal of the Mathematical Society of Japan. (to appear).
Miyuki Koiso、Bennett Palmer:“关于具有重力和部分自由边界的肥皂膜的变分问题”日本数学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOISO Miyuki其他文献
Complete flat fronts as hypersurfaces in Euclidean space
欧几里得空间中作为超曲面的完整平面
- DOI:
10.3792/pjaa.94.25 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
HONDA Atsufumi;KOISO Miyuki;SAJI Kentaro;Honda Atsufumi - 通讯作者:
Honda Atsufumi
KOISO Miyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOISO Miyuki', 18)}}的其他基金
Study on hypersurfaces of constant anisotropic mean curvature with singulalities
具有奇点的常各向异性平均曲率超曲面研究
- 批准号:
26610016 - 财政年份:2014
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
New methods on geometric analysis of variational problems for surfaces
曲面变分问题几何分析新方法
- 批准号:
25287012 - 财政年份:2013
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stability and bifurcation for periodic minimal surfaces and surfaces with constant mean curvature, and applications to other fields
周期极小曲面和平均曲率恒定曲面的稳定性和分岔及其在其他领域的应用
- 批准号:
22654009 - 财政年份:2010
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Research on stability and global properties of solutions of geometric variational problems
几何变分问题解的稳定性和全局性质研究
- 批准号:
19540217 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on global properties of solutions of geometric variational problems
几何变分问题解的全局性质研究
- 批准号:
16540195 - 财政年份:2004
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEFORMATION AND STABILITY OF SURFACES WITH CONSTANT MEAN CURVATURE
平均曲率恒定的表面的变形和稳定性
- 批准号:
11640200 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Stable hypersurfaces with prescribed mean curvature
具有规定平均曲率的稳定超曲面
- 批准号:
EP/S005641/1 - 财政年份:2018
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Mathematical Sciences: Surfaces of Prescribed Mean Curvature
数学科学:规定平均曲率的曲面
- 批准号:
8507312 - 财政年份:1985
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant