Statistical Inference for Duration Model using High-Frequency Financial Time Series

使用高频金融时间序列对持续时间模型进行统计推断

基本信息

  • 批准号:
    17530165
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

For the analysis using high-frequency financial time series, a joint research "Nonparametric Estimation of Multivariate Integrated Volatilities" with Prof. Yosihiko Nishiyama of Institute of Economic Research, Kyoto University is about the estimate manner of volatility of multi-dimensional diffusion process observed nonsynchronously, in which we consider the Malliavin-Mancino estimator and the Hayashi-Yoshida estimator from views of theory and simulation. We conclude that the Hayashi-Yoshida estimator is superior. We also estimated the covariance using government bond futures tick data as empirical study.In the joint research "Nonparametric Estimation for the High Frequency Observations of Multivariate Ito Processes" with Song Mingzi, we provide a nonparametric estimator of multivariate volatility of Ito processes which exploits the estimator of the local time of semimartingale.In "Nonlinear renewal theorems for random walks with perturbations of intermediate order," (with Cun-Hui Zhang), we prove a nonlinear renewal theorem for a random walk having perturbation terms, which is becoming important in a theory of statistical sequential analysis. We apply it to the nonparametric sequential probability ratio test.We also suggest new method of performing a unit root test by manner of a sequential test in the paper reported in the invited session of the meeting of Japanese Statistical Association in 2007.
对于高频金融时间序列的分析,与京都大学经济研究所Yosihiko Nishiyama教授的联合研究“多元综合波动率的非参数估计”是关于非同步观测的多维扩散过程波动率的估计方式,其中我们考虑了Malliavin-Mancino估计器和Hayashi-Yoshida估计器 理论和模拟的观点。我们的结论是 Hayashi-Yoshida 估计量更优。我们还使用国债期货报价数据估计协方差作为实证研究。在与宋明子的联合研究“多元伊藤过程高频观测的非参数估计”中,我们提供了利用半鞅局部时间估计的伊藤过程多元波动性的非参数估计。在“随机游走的非线性更新定理”中 中阶扰动”(与张存辉合作),我们证明了具有扰动项的随机游走的非线性更新定理,这在统计序贯分析理论中变得越来越重要。我们将其应用于非参数序贯概率比检验。我们还在2007年日本统计协会会议特邀会议上报告的论文中提出了通过序贯检验的方式进行单位根检验的新方法。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential estimation of autoregressive parameter with ARCH errors
具有 ARCH 误差的自回归参数的序贯估计
Nonlinear renewal theorems for random walks with perturbations of intermediate order
具有中阶扰动的随机游走的非线性更新定理
Empirical likelihood estimation for regression model with ARCH errors
具有 ARCH 误差的回归模型的经验似然估计
Nonparametric Estimation for the High Frequency Observations of Multivariate Ito Processes
多元 Ito 过程高频观测的非参数估计
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    永井 圭二;宋明子
  • 通讯作者:
    宋明子
「研究成果報告書概要(和文)」より
摘自《研究结果报告摘要(日文)》
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kawauchi;et. al.;Nishimura et al.;Dezawa et al.;Yoshizawa et al.;星野 幹雄;星野 幹雄
  • 通讯作者:
    星野 幹雄
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGAI Keiji其他文献

Control of Nanostructure and Thickness of Foam Capsule for FIREX-I using Phase-Transfer Catalyst and Tailored Polymers
使用相转移催化剂和定制聚合物控制 FIREX-I 泡沫胶囊的纳米结构和厚度
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NAGAI Keiji;YANG Han;YAMANAKA Kentaro;FUJIMURA;Takashi;NEMOTO Nobukatsu;NAKAI Mitsuo;NORIMATSU Takayoshi;IWAMOTO Akifumi;SHIRAGA Hiroyuki;AZECHI Hiroshi;MIMA Kunioki
  • 通讯作者:
    MIMA Kunioki
Current status of LFEX laser and Target fabrication for FIREX-I project
LFEX 激光器和 FIREX-I 项目目标制造的现状
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    NORIMATSU Takayoshi;NAGAI Keiji;YANG Han;YAMANAKA Kentaro;FUJIMURA;Takashi;NEMOTO Nobukatsu;NAKAI Mitsuo;IWAMOTO Akifumi;SHIRAGA Hiroyuki;AZECHI Hiroshi;MIMA Kunioki
  • 通讯作者:
    MIMA Kunioki
Optimal Timing of Housing Tenure Transition : A Real Option Approach
住房权属过渡的最佳时机:实物期权方法
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ONO Takatoshi;TANAKA Kazuo A.;OZAKI Norimasa;SHIOTA Takeshi;NAGAI Keiji;SHIGEMORI Keisuke;NAKANO Motohiro;KATAOKA Toshihiko;Motohiro Adachi
  • 通讯作者:
    Motohiro Adachi

NAGAI Keiji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGAI Keiji', 18)}}的其他基金

Precise synthesis of p-n-junction nano particles by the use of micro fluid device and direct observation of its charge separation
利用微流体装置精确合成p-n结纳米颗粒并直接观察其电荷分离
  • 批准号:
    26410251
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visible light induced water splitting by the use of layered organophotocatalyst films
使用层状有机光催化剂薄膜进行可见光诱导水分解
  • 批准号:
    24655169
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Thin film preparation and its extension to photofunctional devices of low-density organic polymer with transparency
低密度透明有机聚合物薄膜制备及其在光功能器件中的应用
  • 批准号:
    22350099
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Statistical Sequential Analysis for Stochastic Processes and Its Application to Risk Management
随机过程的统计序贯分析及其在风险管理中的应用
  • 批准号:
    21530198
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Decision of Low Density Materials for Fast Ignition Realization Experiments(FIREX) and its Encapsulation
快速点火实现实验(FIREX)低密度材料的选择及其封装
  • 批准号:
    19360414
  • 财政年份:
    2007
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Automated Statistical Techniques for Systematic Anomaly Detection in High Frequency Data
高频数据系统异常检测的自动统计技术
  • 批准号:
    RGPIN-2022-04426
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Discovery Grants Program - Individual
Identification of Monetary Policy Shocks Using Text Data and High-Frequency Data
使用文本数据和高频数据识别货币政策冲击
  • 批准号:
    22J12457
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Multivariate Stochastic Volatility Models for High-dimensional and High Frequency Data
高维高频数据的多元随机波动率模型
  • 批准号:
    22K01429
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: The Macroeconomy, Labor Markets, and Economic Mobility from the Civil War to Today: New High Frequency Data on Local Economic Shock
合作研究:从内战至今的宏观经济、劳动力市场和经济流动性:有关当地经济冲击的新高频数据
  • 批准号:
    2049393
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Collaborative Research: The Macroeconomy, Labor Markets, and Economic Mobility from the Civil War to Today: New High Frequency Data on Local Economic Shocks
合作研究:从内战至今的宏观经济、劳动力市场和经济流动性:有关当地经济冲击的新高频数据
  • 批准号:
    2049401
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Econometric methods for high frequency data
高频数据的计量经济学方法
  • 批准号:
    20K13470
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data
合作研究:高维高频数据的统计推断
  • 批准号:
    2015530
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: High-Frequency Data Collection for Human Mobility Prediction during COVID-19
RAPID/协作研究:用于 COVID-19 期间人类流动性预测的高频数据收集
  • 批准号:
    2027744
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Optimal Nonparametric Methods for Ito Processes Based on High-Frequency Data
基于高频数据的 Ito 过程的最优非参数方法
  • 批准号:
    2015323
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
Collaborative Research: Statistical Inference for High Dimensional and High Frequency Data
合作研究:高维高频数据的统计推断
  • 批准号:
    2015544
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了