Synthesis and Investigation of New Core-Shell Nanoparticles as Molecular Carrier Systems
新型核壳纳米粒子作为分子载体系统的合成与研究
基本信息
- 批准号:49558485
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2008
- 资助国家:德国
- 起止时间:2007-12-31 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this joint proposal is to develop highly efficient syntheses for new dendritic coreshell nanocarriers and to systematically investigate the effects of molecular architecture on their encapsulation and transport of hydrophobic molecules in aqueous systems. By combining the expertise of the Guan group (UC Irvine, USA) for one-pot synthesis of hydrophobic polyolefin cores with controllable topologies and the Haag group (Freie Universitaet Berlin, Germany) for efficient synthesis of hydrophilic and biocompatible polyglycerol shells, the proposed study is aimed to develop efficient methodology for the synthesis of core-shell nanocarriers and to reveal basic structure-property information on the resulting new amphphilic molecular architectures. In the proposed joint studies, first, the Guan group will synthesize a series of hydrophobic polyolefin cores with architectures ranging from linear, hyperbranched, to dendritic by using their chain walking polymerization methodology developed with their prior NSF CAREER grant. Using a chain walking catalyst, dendritic nanoparticles including core-shell nanostructures have been obtained in one-pot polymerization. The synthetic efficiency, versatility, combined with the unique structure and properties for the polymers make this strategy exciting for further investigation. These cores will carry different functional groups such as aromatic units in the interior and primary hydroxyl or alkyne groups on the surface. Subsequently, the Haag group will graft biocompatible and hydrophilic dendritic polyglycerol shells from/to the hydrophic polyolefin cores by using their established methodologies. Finally, the encapsulation and molecular transport properties of the synthesized core-shell nanocarriers for representative hydrophobic molecules in aqueous solution will be investigated by UV/Vis and fluorescence spectroscopy. The basic solution properties of these core-shell nanocarriers and their aggregation behavior will also be carefully examined by light scattering and cryo- TEM. The understanding of structure-property relationships gained from this study will provide critical insight for designing highly efficient molecular nanocarriers that may find potential applications for ink formulation and drug delivery. The intellectual merit of this proposed activity is 2-fold: (1) the true marriage between two unique and complementary new synthetic methodologies shall lead to the development of highly efficient synthetic routes for accessing novel core-shell nanocarriers; (2) through systematically varying the architecture/structure of the core-shell constructs and investigating their solution and molecular transport properties, important insights will be gained on how to design efficient molecular nanocarriers for a broad range of applications. The broad impacts of this joint study is numerous and significant: (1) Impact to the industry: successful development of facile synthesis of efficient molecular nanocarriers shall have enormous impacts on various industries including health care, drug formulation and delivery, ink and paint formulations. (2) Impact to nanoscience: efficient methods for making biocompatible, complex and multifunctional soft nanomaterials shall accelerate many nanotechnology developments including nanomedicine and medical diagnostics. (3) Educational impacts: The proposed multi-disciplinary and international collaborative research activity will provide excellent training for students in many areas including organic synthesis, organometallic, polymer synthesis and physical property studies, and nanoscience. This will provide great opportunities to train graduate and undergraduate students, especially for minority and women students. The frequent exchanges between the two groups will not only expose the students to different expertise and techniques, but provides them opportunities to gain international experience in scientific collaborations.
本联合提案的目的是开发高效合成新的树状核壳纳米载体,并系统地研究分子结构对水体系中疏水分子的包封和运输的影响。通过结合Guan团队(美国加州大学欧文分校)的一锅合成具有可控拓扑结构的疏水聚烯烃核的专业知识和Haag团队(德国柏林自由大学)的高效合成亲水性和生物相容性聚甘油壳的专业知识,本研究旨在开发合成核-壳纳米载体的有效方法,并揭示由此产生的新的两亲分子结构的基本结构-性质信息。在拟议的联合研究中,首先,Guan团队将利用他们先前获得的NSF CAREER资助开发的链走聚合方法,合成一系列具有线性,超支化和枝状结构的疏水性聚烯烃核心。采用链行走催化剂,在一锅聚合中得到了具有核壳结构的枝状纳米颗粒。聚合物的合成效率、通用性以及独特的结构和性能使这一策略值得进一步研究。这些核将携带不同的官能团,如内部的芳香单位和表面的伯羟基或炔基。随后,Haag团队将使用他们已建立的方法将生物相容性和亲水的树突状聚甘油壳从水性聚烯烃核中嫁接到水合聚烯烃核中。最后,利用紫外/可见光谱和荧光光谱研究了所合成的核壳纳米载体在水溶液中对代表性疏水分子的包封性和分子输运性。这些核壳纳米载体的基本溶液性质及其聚集行为也将通过光散射和低温透射电镜进行仔细研究。从这项研究中获得的对结构-性质关系的理解将为设计高效的分子纳米载体提供关键的见解,这些载体可能会在油墨配方和药物输送中找到潜在的应用。这一活动的智力价值是双重的:(1)两种独特和互补的新合成方法之间的真正结合将导致开发用于获取新型核壳纳米载体的高效合成路线;(2)通过系统地改变核壳结构的结构和研究它们的溶液和分子传输特性,将获得关于如何设计高效分子纳米载体的重要见解。这项联合研究的广泛影响是众多和显著的:(1)对行业的影响:高效分子纳米载体的快速合成的成功开发将对包括医疗保健、药物配方和递送、油墨和油漆配方在内的各个行业产生巨大影响。(2)对纳米科学的影响:制造生物相容性、复杂性和多功能软纳米材料的有效方法将加速许多纳米技术的发展,包括纳米医学和医学诊断。(3)教育方面的影响:本计划的多学科和国际合作研究活动将为学生在有机合成、有机金属、聚合物合成和物理性质研究、纳米科学等多个领域提供良好的培训。这将为培养研究生和本科生,特别是少数民族和女性学生提供很好的机会。两个小组之间的频繁交流不仅将使学生接触到不同的专业知识和技术,而且为他们提供获得国际科学合作经验的机会。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Rainer Haag其他文献
Professor Dr. Rainer Haag的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Rainer Haag', 18)}}的其他基金
Adaption of nanocarrier-based drug delivery systems to the redox-state and thiol gradients of healthy and diseased skin
基于纳米载体的药物输送系统适应健康和患病皮肤的氧化还原态和硫醇梯度
- 批准号:
407272851 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
EGFR-targeted polyglycerol-shelled multifunctional micellar drug conjugates for precision cancer chemotherapy
EGFR靶向聚甘油壳多功能胶束药物缀合物用于精准癌症化疗
- 批准号:
392192146 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Chemo-enzymatic synthesis of multivalent dendritic architectures for the control of neurodegenerative disorders
用于控制神经退行性疾病的多价树突结构的化学酶合成
- 批准号:
323365372 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Core-Facility BioSupraMol, Core-Facility and competence network
BioSupraMol 核心设施、核心设施和能力网络
- 批准号:
213868804 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Dendritic Nanocarriers for the Selective and Targeted Metal Ion Transport over Biological Barriers
用于跨生物屏障选择性和靶向金属离子传输的树枝状纳米载体
- 批准号:
208326766 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grants
Sustainability By Advanced Chemoenzymatic Technologies
先进化学酶技术的可持续性
- 批准号:
5409570 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Entwicklung hochbeladbarer polymerer Träger für die kombinatorische Synthese und Evaluierung am Beispiel von Wirkstoffsynthesen im Vergleich zu konventionellen Trägersystemen
开发用于组合合成和评估的高负载聚合物载体,以药物合成为例,与传统载体系统进行比较
- 批准号:
5364324 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Research Grants
Teilfluorierte makromolekulare Nanoreaktoren auf der Basis hochverzweigter Polyether mit Kern-Schale-Topologie für Anwendungen bei Phasentransferreaktionen und Mehrphasenkatalysen
基于具有核壳拓扑结构的高度支化聚醚的部分氟化高分子纳米反应器,用于相转移反应和多相催化
- 批准号:
5310594 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Investigation of New Ammonia Synthesis Process Utilizing Vanadium-Based Hydrogen Permeable Alloy Membrane
钒基透氢合金膜合成氨新工艺研究
- 批准号:
15K14160 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
- 批准号:
BB/H005412/2 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
Investigation of covalent intermetallic compounds prepared by high-pressure synthesis and exploring new superconductors
高压合成共价金属间化合物研究及新型超导体探索
- 批准号:
24550233 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthesis of new bent core mesogens, optimized for large non-linear optical effects and investigation of their physical properties with respect to phase behaviour and efficiency of second harmonic generation
新型弯曲核心介晶的合成,针对大非线性光学效应进行了优化,并研究了其在相位行为和二次谐波产生效率方面的物理特性
- 批准号:
174570555 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Fellowships
Physical investigation and understanding of biomineralisation proteins and their use for the synthesis of new nanomaterials
生物矿化蛋白质的物理研究和理解及其在合成新纳米材料中的用途
- 批准号:
BB/H005412/1 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Grant
Investigation and application of new metabolic pathways involved in the synthesis of inosinate and guanylate
肌苷酸和鸟苷酸合成新代谢途径的研究及应用
- 批准号:
21650193 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Investigation of Synthesis Techniques for New Intergrated Active Dielectric Antennas with Multi-dimensional Scanning Capabilities
具有多维扫描能力的新型集成有源介质天线合成技术研究
- 批准号:
319296-2005 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Synthesis and reactivity investigation of new pd complexes featuring Lewis acid-Lewis base b,p,s ligands
路易斯酸-路易斯碱b,p,s配体的新型PD配合物的合成和反应性研究
- 批准号:
331920-2007 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Master's
Synthesis and Investigation of New Core-Shell Nanoparticles as Molecular Carrier Systems
新型核壳纳米粒子作为分子载体系统的合成与研究
- 批准号:
0723497 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing Grant
Synthesis and reactivity investigation of new pd complexes featuring Lewis acid-Lewis base b,p,s ligands
路易斯酸-路易斯碱b,p,s配体的新型PD配合物的合成和反应性研究
- 批准号:
331920-2006 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Master's














{{item.name}}会员




