Synthetically engineered microalgae for improved gut function and human health
合成工程微藻可改善肠道功能和人类健康
基本信息
- 批准号:BB/Y00857X/1
- 负责人:
- 金额:$ 239.12万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Microalgae are small microscope plants that have the ability to produce important nutritional components, including proteins, carbohydrates and lipids. They can even be used to sequester carbon dioxide and make useful products such as nutraceuticals, pharmaceuticals, biomaterials and biofuel. They usually are grown in water and can absorb nutrients providing cleaner waste water and reduce eutrophication. Making this vision for microalgae a reality has been the focus of many scientists and engineers since the 1970s. They have been declared a solution to the world's problems, being able to address nutrition shortages as the world's population grows to 9 billion people by 2050, reduce CO2 emissions as the world suffers from climate change and produce a sustainable economy as the world reduces its reliance on fossil fuels and the material by-products. To achieve this vision, however, there are hurdles associated with the scaling-up process from laboratory to what would be considered useful commercially. The main bottlenecks are on the ability to grow algae at scale, utilising inexpensive nutrients, and the dewatering process, or extracting the algae from the water (dewatering), and then extraction of useful compounds from the microalgae. Experiments at the University of Glasgow demonstrated growing microalgae on thin films as a way to overcome dewatering costs, financially and in terms of energy. Growing them in this way, allows them to grow as a biofilm. Little work has been done investigating this biofilm formation in this context but it was clear from this work that the yields were low on occasions. Having a reliable and high yield and understanding the impact of growth conditions (e.g. substrate material, temperature, pH, water activity) is important to progress and scale the applications). Recently, the world has seen incredible changes in being able to manipulate genomes of different organisms, a lot of this work has focussed on bacteria, but there is a growing interest in being able to manipulate microalgae to improve their characteristics e.g. growth rate or overexpress certain molecular compounds. Little work has been done on engineering microalgae to grow as biofilms, which is the focus of the current project. Thin film photo bioreactors will be built with sophisticated, yet simple, control systems to monitor biofilm growth, and use nutrients extracted from food-grade waste-streams. Their performance will be assessed with wild-type strains of microalgae, and then the ability to improve the microalgae yields and characteristics will be observed with engineered microalgae. Specifically, components that will be overexpressed as a way of developing and demonstrating these new methodologies will include Vitamin B12, which is an essential vitamin that cannot be produced in the body, Lutein (a carotenoid, found in the human eye in the macular and retina) and exopolysaccharides (EPS, which can help gut health). Once grown, samples will be analysed and compared using state of the art equipment, under the "omics" umbrella, allowing detailed assessment of proteins, carbohydrates and lipids. Samples will also be assessed for their impact on gut function using in-vitro models. Control systems will be developed and the data collected from each part of the process to develop new models, assessing life cycle analysis, techno-economic assessment and new machine learning codes to help understand the opportunities from this work.Ultimately the work will serve as the bases for a new area of research to impact society through improved nutrition development, and spring board into other areas to impact sustainability and climate change.
微藻是小型显微镜植物,具有产生重要营养成分的能力,包括蛋白质,碳水化合物和脂质。它们甚至可以用来隔离二氧化碳,制造有用的产品,如营养品,药品,生物材料和生物燃料。它们通常生长在水中,可以吸收营养物质,提供更清洁的废水,减少富营养化。自20世纪70年代以来,使微藻的这一愿景成为现实一直是许多科学家和工程师的焦点。它们被宣布为解决世界问题的办法,能够在世界人口到2050年增长到90亿时解决营养短缺问题,在世界遭受气候变化影响时减少二氧化碳排放,并在世界减少对化石燃料和物质副产品的依赖时产生可持续经济。然而,为了实现这一愿景,从实验室到商业上被认为有用的规模扩大过程存在障碍。主要的瓶颈在于利用廉价的营养物大规模生长藻类的能力,以及脱水过程,或从水中提取藻类(脱水),然后从微藻中提取有用的化合物。格拉斯哥大学的实验证明,在薄膜上种植微藻是一种克服脱水成本的方法,在财政和能源方面。以这种方式培养它们,使它们作为生物膜生长。在这种情况下,几乎没有研究这种生物膜形成的工作,但从这项工作中可以清楚地看到,产量有时很低。获得可靠的高产率并了解生长条件(例如基质材料、温度、pH值、水活度)的影响对于发展和扩大应用非常重要。最近,世界在能够操纵不同生物体的基因组方面发生了令人难以置信的变化,许多这项工作都集中在细菌上,但人们对能够操纵微藻以改善其特性(例如生长速率或过表达某些分子化合物)的兴趣越来越大。在工程微藻作为生物膜生长方面做的工作很少,这是当前项目的重点。薄膜光生物反应器将配备复杂而简单的控制系统,以监测生物膜的生长,并使用从食品级废水中提取的营养物质。将用野生型微藻菌株评估它们的性能,然后用工程微藻观察提高微藻产量和特性的能力。具体而言,将被过度表达作为开发和展示这些新方法的一种方式的组件将包括维生素B12,这是一种不能在体内产生的必需维生素,叶黄素(一种类胡萝卜素,在人眼的黄斑和视网膜中发现)和胞外多糖(EPS,可以帮助肠道健康)。一旦生长,将在“组学”保护伞下使用最先进的设备对样本进行分析和比较,从而详细评估蛋白质、碳水化合物和脂质。还将使用体外模型评估样品对肠道功能的影响。将开发控制系统,并从过程的每个部分收集数据,以开发新模型,评估生命周期分析,技术经济评估和新的机器学习代码,以帮助了解这项工作的机会。最终,这项工作将成为一个新的研究领域的基础,通过改善营养发展来影响社会,并进入其他领域,以影响可持续性和气候变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ian Watson其他文献
The Actor's Way@@@Towards a Third Theatre@@@The Paper Canoe: A Guide to Theatre Anthropology@@@The Performers' Village
演员之路@@@迈向第三个剧院@@@纸独木舟:戏剧人类学指南@@@表演村
- DOI:
10.2307/1124280 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Seth Baumrin;E. Christoffersen;R. Fowler;Ian Watson;Eugenio Barba;K. Hastrup;Judy Barba;L. Sykes - 通讯作者:
L. Sykes
Reflections on NICE’s Uptake of New Methods: Past, Present, and the 2020 Review
- DOI:
10.1007/s40273-020-00888-5 - 发表时间:
2020-02-04 - 期刊:
- 影响因子:4.600
- 作者:
Meindert Boysen;Ian Watson - 通讯作者:
Ian Watson
Project Report The Acquisition of Prosody in Speech Production : English and French Reference
项目报告语音生成中韵律的习得:英语和法语参考
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
French English;Ian Watson;Esther Grabe - 通讯作者:
Esther Grabe
Negotiating Cultures: Eugenio Barba and the Intercultural Debate
文化谈判:尤金尼奥·巴尔巴和跨文化辩论
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Ian Watson - 通讯作者:
Ian Watson
Convolutional and Recurrent Neural Networks for Spoken Emotion Recognition
用于语音情感识别的卷积神经网络和循环神经网络
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Aaron Keesing;Ian Watson;Michael Witbrock - 通讯作者:
Michael Witbrock
Ian Watson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ian Watson', 18)}}的其他基金
Real time control of gasifiers to increase tolerance to biomass variety and reduce emissions
实时控制气化炉,以提高对生物质品种的耐受性并减少排放
- 批准号:
EP/M01343X/1 - 财政年份:2015
- 资助金额:
$ 239.12万 - 项目类别:
Research Grant
An Efficient Page and Object-based Transactional Memory System
高效的页面和基于对象的事务内存系统
- 批准号:
EP/E036368/1 - 财政年份:2007
- 资助金额:
$ 239.12万 - 项目类别:
Research Grant
相似国自然基金
基于AMPK/PGC-1α信号轴的工程化外泌体靶向调控BMSCs能量代谢重编程在老年机体骨修复中的作用及其机制研究
- 批准号:82370920
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
重复荷载作用下ECC材料的疲劳性能及力学模型研究
- 批准号:51408487
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
- 批准号:
2337540 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Continuing Grant
CAREER: Towards highly efficient UV emitters with lattice engineered substrates
事业:采用晶格工程基板实现高效紫外线发射器
- 批准号:
2338683 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Continuing Grant
Laser Engineered Surfaces/Interfaces for Advanced Batteries
用于先进电池的激光工程表面/界面
- 批准号:
EP/Y036727/1 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Research Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Standard Grant
CAREER: Epigenetic Regulation of Gene Expression in Engineered Prokaryotes
职业:工程原核生物基因表达的表观遗传调控
- 批准号:
2338573 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Continuing Grant
Evaluation and optimisation of new engineered human human apoferritins: protein nanocages for targeted drug delivery and intracellular cargo release
新型工程人类脱铁铁蛋白的评估和优化:用于靶向药物输送和细胞内货物释放的蛋白质纳米笼
- 批准号:
BB/Y008200/1 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Research Grant
Engineered Genetic Control Systems for Advanced Therapeutics
用于先进治疗的工程基因控制系统
- 批准号:
BB/Y008545/1 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Research Grant
A novel precision-engineered microfluidic chip for wear particle research
一种用于磨损颗粒研究的新型精密设计微流控芯片
- 批准号:
DP240102971 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Discovery Projects
Engineered redox polymers for catalytic water purification
用于催化水净化的工程氧化还原聚合物
- 批准号:
FT230100526 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
ARC Future Fellowships
CAREER: Mechano-Metabolic Control of Electrical Remodeling of Human Induced Pluripotent Stem Cell Derived Engineered Heart Muscle
职业:人类诱导多能干细胞衍生的工程心肌电重塑的机械代谢控制
- 批准号:
2338931 - 财政年份:2024
- 资助金额:
$ 239.12万 - 项目类别:
Standard Grant