Deep conditional independence tests with application to imaging genetics
深度条件独立性测试及其在成像遗传学中的应用
基本信息
- 批准号:498571265
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep learning is a workhorse for biomedical data analysis due to its ability to leverage highly nonlinear associations to train accurate prediction models, in particular for structured data such as images or sequences. However, prediction quality alone - which may be influenced by confounding - is insufficient in order to move from data towards understanding the underlying biology. Statistical tests for independence that adjust for potential confounding influences make sound statements about dependencies between biological variables on the population level. Current statistical tests, however, are not tailored towards applications to structured data. In this project, we develop conditional independence tests for statistical association between a continuous scalar response Y and an input/covariate X, while conditioning on covariates Z that may confound the association due to dependencies with both X and Y. Specifically, we consider the cases where one or both of X and Z are structured (in particular images). Our approach uses deep learning to map structured data X and/or Z onto continuous embeddings, which may for example come from transfer learning. We then use tests in linearized mixed effects models on embedded variables, where random effects allow for parsimonious modeling in high dimensions. We will investigate theoretical properties of all developed tests and provide efficient algorithms and implementations. We focus in particular also on good power properties in finite samples and derive sample size and power calculations.The developed methods are motivated by applications in imaging genetics, where conditional independence testing is used to map heritable phenotypes in images to genetic loci, correcting for confounding by population structure and relatedness via conditioning. Population-based imaging allows to efficiently quantify phenotypes, including disease biomarkers. While current genome-wide association studies analyze a priori known scalar biomarkers such as organ sizes, the goal of this project is to enable unbiased testing for the presence of any heritable phenotypic variation in images towards the discovery of novel biomarkers. In particular, we will use our methods for gene-based association studies of 2D retinal fundus images and 3D brain magnetic resonance images in the UK Biobank.
深度学习是生物医学数据分析的主力,因为它能够利用高度非线性的关联来训练准确的预测模型,特别是对于图像或序列等结构化数据。然而,预测质量本身-这可能会受到混杂的影响-是不够的,以从数据走向了解潜在的生物学。调整潜在混杂影响的独立性统计检验对生物变量在总体水平上的依赖性做出了合理的陈述。然而,目前的统计测试并不是针对结构化数据的应用而定制的。在这个项目中,我们开发了连续标量响应Y和输入/协变量X之间统计关联的条件独立性检验,同时调节协变量Z,由于与X和Y的依赖关系,可能会混淆关联。具体来说,我们考虑X和Z中的一个或两个被结构化的情况(特别是图像)。我们的方法使用深度学习将结构化数据X和/或Z映射到连续嵌入上,例如,这可能来自迁移学习。然后,我们在嵌入变量的线性混合效应模型中使用测试,其中随机效应允许在高维中进行简约建模。我们将研究所有开发的测试的理论属性,并提供有效的算法和实现。我们还特别关注有限样本中的良好功效特性,并推导出样本大小和功效calculations.The开发的方法的动机是成像遗传学中的应用,其中条件独立性测试用于将图像中的遗传表型映射到遗传位点,通过调节校正群体结构和相关性的混淆。基于人群的成像允许有效地量化表型,包括疾病生物标志物。虽然目前的全基因组关联研究分析了先验已知的标量生物标志物,如器官大小,但该项目的目标是对图像中任何可遗传表型变异的存在进行无偏测试,以发现新的生物标志物。特别是,我们将使用我们的方法在英国生物银行的2D视网膜眼底图像和3D脑磁共振图像的基因为基础的关联研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Sonja Greven其他文献
Professorin Dr. Sonja Greven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Sonja Greven', 18)}}的其他基金
Flexible regression methods for curve and shape data
曲线和形状数据的灵活回归方法
- 批准号:
431707411 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Statistische Methoden für Longitudinale Funktionale Daten
纵向功能数据的统计方法
- 批准号:
181473262 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Combining geometry-aware statistical and deep learning for neuroimaging data
结合几何感知统计和深度学习来获取神经影像数据
- 批准号:
498566544 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Statistical modeling using mouse movements to model measurement error and improve data quality in web surveys
使用鼠标移动进行统计建模,对测量误差进行建模并提高网络调查中的数据质量
- 批准号:
396057129 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
神经元限制性沉默因子NRSF在帕金森病中的作用和机制研究
- 批准号:30770659
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Doctoral Dissertation Research: The conditional independence assumption in juvenile dental age estimation
博士论文研究:青少年牙龄估计中的条件独立假设
- 批准号:
2141943 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Beyond Conditional Independence: New Model-Free Targets for High-Dimensional Inference
职业:超越条件独立:高维推理的新无模型目标
- 批准号:
2045981 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Continuing Grant
Bayesian Non-Parametric Test for Conditional Independence
条件独立性的贝叶斯非参数检验
- 批准号:
EP/R013519/1 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grant
Formalization and automation for statistical causal inference
统计因果推断的形式化和自动化
- 批准号:
16K12398 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Non-gaussian graphical models via additive conditional independence and nonlinear dimension reduction
通过加性条件独立和非线性降维的非高斯图形模型
- 批准号:
1407537 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Improved Bayesian phylogenetic inference based on approximate conditional independence
基于近似条件独立性的改进贝叶斯系统发育推断
- 批准号:
1354675 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant
Construction of a New Algebraic Statistical Theory for StatisticalCausal Inference
统计因果推断的新代数统计理论的构建
- 批准号:
22500251 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conditional Independence based Model Diagnostic Methods
基于条件独立的模型诊断方法
- 批准号:
8182129 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Conditional Independence based Model Diagnostic Methods
基于条件独立的模型诊断方法
- 批准号:
7872100 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Conditional Independence, Noncausality and International Market Links: A Realized Measure Approach
条件独立性、非因果性和国际市场联系:一种已实现的衡量方法
- 批准号:
ES/E009522/1 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Research Grant