Flexible density regression methods
灵活的密度回归方法
基本信息
- 批准号:513634041
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to develop a unified framework of flexible semiparametric regression methods for densities to better describe and understand relationships between variables of interest. While limitations in traditional mean-oriented parametric modeling of (scalar) data have promoted a variety of extensions to other distributional characteristics (quantiles) or multiple distributional parameters (distributional regression), first methods have recently been developed in functional and compositional data analysis for probability densities as objects of statistical analysis. However, these branches of regression with flexible distributions (individual-level approaches) and statistical analysis of distributions (density-level approaches) have so far been independently developed. Our mission is to join them for fruitful mutual enrichment, facilitating methodological developments. To illustrate the demand of flexible density regression methods, we refer to an example from gender economics: the distribution of the woman's share of a couple's labor income is important for questions on gender identity norms. As a probability distribution, it presents a mixed distribution on [0,1] with positive probability mass at 0 and 1 (for single-income couples) and a continuous - often bimodal - density in between (for double-income couples). It is then of interest to relate this distribution to variables that may influence the distribution such as (age of) children in the household, year or living region. Clear differences occur, for instance, between the eastern and western states in Germany. The density is particularly of interest, as it makes shifts in probability mass or bimodalities due to subgroups easily visible, and as it extends well to discrete, continuous, mixed or bivariate distributions. Such analyses require methods that can model the whole distribution flexibly depending on covariates without parametric assumptions such as normality, and that allow for linear, nonlinear and random effects. We will address this by developing suitable methods for density regression. Depending on the data situation, density regression methods are required and will be developed for density-valued data - e.g. when a histogram is provided for administrative data or is used to summarize massive data - as well as for individual scalar data, when interest lies in modeling the conditional density given covariates. In our unified approach, these two scenarios present two sides of the same coin instead of referring to two different branches of statistics. We will develop methods for continuous densities (e.g. income), discrete densities, i.e. compositional data (e.g. time use over discrete categories), as well as mixed densities (e.g. a woman's fraction of household labor income). Additionally, we will extend this to bivariate densities e.g. when jointly looking at a couple within a household, allowing to overcome also restrictive correlation assumptions.
该项目的目标是为密度开发一个灵活的半参数回归方法的统一框架,以更好地描述和理解感兴趣的变量之间的关系。虽然传统的(标量)数据的面向均值的参数化建模的局限性促进了对其他分布特征(分位数)或多个分布参数(分布回归)的各种扩展,但最近在概率密度作为统计分析对象的功能和组成数据分析中开发了第一种方法。然而,这些具有灵活分布的回归分支(个体水平方法)和分布的统计分析(密度水平方法)迄今为止都是独立发展的。我们的使命是与他们一起富有成效地相互充实,促进方法论的发展。为了说明灵活密度回归方法的必要性,我们引用了性别经济学中的一个例子:女性在夫妻劳动收入中所占份额的分布对性别认同规范的问题很重要。作为一个概率分布,它在[0,1]上呈现一个混合分布,在0和1处的概率质量为正(对于单收入夫妇),在两者之间呈现连续的(通常是双峰的)密度(对于双收入夫妇)。因此,将这种分布与可能影响分布的变量(如家庭中儿童的年龄、年份或居住地区)联系起来是有意义的。例如,德国的东部和西部各州之间就存在明显的差异。密度是特别有趣的,因为它使得由于子群而引起的概率质量或双模态的变化很容易看到,并且因为它很好地扩展到离散、连续、混合或二元分布。这种分析需要能够灵活地根据协变量对整个分布建模的方法,而不需要参数假设(如正态性),并且允许线性、非线性和随机效应。我们将通过开发合适的密度回归方法来解决这个问题。根据数据的情况,密度回归方法是必需的,并且将被开发用于密度值数据——例如,当为管理数据提供直方图或用于汇总大量数据时——以及单个标量数据,当兴趣在于对给定协变量的条件密度建模时。在我们的统一方法中,这两种情况呈现了同一枚硬币的两面,而不是指两个不同的统计分支。我们将开发连续密度(如收入)、离散密度(即组成数据(如离散类别的时间使用)以及混合密度(如女性在家庭劳动收入中所占比例)的方法。此外,我们将把它扩展到双变量密度,例如,当共同观察一个家庭中的一对夫妇时,允许克服限制性的相关性假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Sonja Greven其他文献
Professorin Dr. Sonja Greven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Sonja Greven', 18)}}的其他基金
Flexible regression methods for curve and shape data
曲线和形状数据的灵活回归方法
- 批准号:
431707411 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grants
Statistische Methoden für Longitudinale Funktionale Daten
纵向功能数据的统计方法
- 批准号:
181473262 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Statistical modeling using mouse movements to model measurement error and improve data quality in web surveys
使用鼠标移动进行统计建模,对测量误差进行建模并提高网络调查中的数据质量
- 批准号:
396057129 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Combining geometry-aware statistical and deep learning for neuroimaging data
结合几何感知统计和深度学习来获取神经影像数据
- 批准号:
498566544 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Deep conditional independence tests with application to imaging genetics
深度条件独立性测试及其在成像遗传学中的应用
- 批准号:
498571265 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
浸润特性调制的统计热力学研究
- 批准号:21173271
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
非高斯随机分布控制系统的集成故障诊断与容错控制研究
- 批准号:61104022
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
磷脂转运蛋白通过磷酸鞘氨醇1影响高密度脂蛋白抗动脉粥样硬化功能的分子机制
- 批准号:81070247
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
miRNA靶位点遗传多态性调控骨质疏松机理研究
- 批准号:31071097
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
突触后致密物95-NMDAR信号复合体在发育中神经元惊厥后高兴奋性中的作用
- 批准号:30870865
- 批准年份:2008
- 资助金额:35.0 万元
- 项目类别:面上项目
图的一般染色数与博弈染色数
- 批准号:10771035
- 批准年份:2007
- 资助金额:18.0 万元
- 项目类别:面上项目
PSD-93基因介导缺血性脑损伤的分子机制研究
- 批准号:30670739
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Aging with a Traumatic Brain Injury: Implications for Balance Deficits and Fall Risk
脑外伤导致的衰老:对平衡缺陷和跌倒风险的影响
- 批准号:
10702005 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Smooth muscle cell-derived cell fates and cellular interactions in atherosclerotic plaque stability in disease progression and regression.
平滑肌细胞衍生的细胞命运和细胞相互作用在疾病进展和消退中动脉粥样硬化斑块的稳定性。
- 批准号:
10567844 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identification of smooth muscle cell genes causal in atherosclerotic plaque stability and cardiovascular disease risk
鉴定导致动脉粥样硬化斑块稳定性和心血管疾病风险的平滑肌细胞基因
- 批准号:
10720225 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Single-molecule Investigation of the Interaction Between MeCP2 and Chromatin
MeCP2 与染色质相互作用的单分子研究
- 批准号:
10606104 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Modern Analytics to Improve Quality & Outcome Assessments Following Congenital Heart Surgery
现代分析提高质量
- 批准号:
10419358 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Dopamine Mediated Control of Retinal Vascular Integrity
多巴胺介导的视网膜血管完整性控制
- 批准号:
10705700 - 财政年份:2022
- 资助金额:
-- - 项目类别: