Flexible regression methods for curve and shape data
曲线和形状数据的灵活回归方法
基本信息
- 批准号:431707411
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2020
- 资助国家:德国
- 起止时间:2019-12-31 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using modern imaging and tracking devices, researchers in a wide range of areas collect more and more data, where each observation corresponds to a two- or higher-dimensional curve. Examples are movement patterns and bone outlines. In some settings, these can be viewed as multivariate functional data. In others, the functional shape is primarily of interest, i.e. the equivalence class of the curve accounting for invariance to translation, rotation, scaling and re-parameterization along the curve. This induces a non-Euclidean geometry on the resulting quotient spaces (shape spaces). The goal of this project is to advance the field of functional shape analysis both in terms of the theory and in terms of usefully applicable methods for real data analysis problems. In particular, a general and flexible regression framework for curves and shapes in two (or potentially higher) dimensions will be developed and implemented.Successively generalizing from additive models for functional data to those for multivariate functional data and for functional shape data, this framework will offer unprecedented flexibility in the following respects: it will allow for modeling curve and shape responses modulo re-parameterization; intrinsically and modularly account for different combinations of invariances with respect to re-parameterization, translation, rotation and/or scaling according to the needs in a specific data scenario; allow for curves and shapes to be irregularly or sparsely sampled, or observed as an ensemble of shapes; and include various additive covariate effect types including linear, non-linear and random effects. Additionally, appropriate effects for scalar-on-curve and -shape regression will be developed. While building on interpretable linear and additive predictors, the framework will conform to the intrinsic geometries of the spaces arising from the respective invariances. All developments will be implemented in the open-source software R and applied in collaborative projects. Overall, the developed framework will thus greatly extend the availability and flexibility of regression models for curve and shape analysis.
使用现代成像和跟踪设备,研究人员在广泛的领域收集越来越多的数据,其中每个观察对应于一个二维或更高维的曲线。例如运动模式和骨骼轮廓。在某些设置中,这些可以被视为多变量函数数据。在其他情况下,函数形状主要是感兴趣的,即曲线的等价类,该等价类解释了沿着曲线的平移、旋转、缩放和重新参数化的不变性。这在所得的商空间(形状空间)上诱导出非欧几里德几何。这个项目的目标是推进功能形状分析领域的理论和真实的数据分析问题的有用的适用方法。特别是,一个通用的和灵活的回归框架曲线和形状在两个从函数数据的加性模型到多变量函数数据和函数形状数据的加性模型,该框架将在以下方面提供前所未有的灵活性:它将允许建模曲线和形状响应模重新参数化;根据特定数据场景中的需要,内在地和模块化地考虑关于重新参数化、平移、旋转和/或缩放的不变性的不同组合;允许曲线和形状被不规则地或稀疏地采样,或者作为形状的集合被观察;并且包括各种加性协变量效应类型,包括线性、非线性和随机效应。此外,将开发曲线上标量和形状回归的适当效应。虽然建立在可解释的线性和添加剂预测,框架将符合从各自的不变性所产生的空间的内在几何形状。所有开发都将在开源软件R中实现,并应用于合作项目。总体而言,开发的框架将大大扩展曲线和形状分析回归模型的可用性和灵活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Sonja Greven其他文献
Professorin Dr. Sonja Greven的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Sonja Greven', 18)}}的其他基金
Statistische Methoden für Longitudinale Funktionale Daten
纵向功能数据的统计方法
- 批准号:
181473262 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Independent Junior Research Groups
Combining geometry-aware statistical and deep learning for neuroimaging data
结合几何感知统计和深度学习来获取神经影像数据
- 批准号:
498566544 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
Statistical modeling using mouse movements to model measurement error and improve data quality in web surveys
使用鼠标移动进行统计建模,对测量误差进行建模并提高网络调查中的数据质量
- 批准号:
396057129 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Deep conditional independence tests with application to imaging genetics
深度条件独立性测试及其在成像遗传学中的应用
- 批准号:
498571265 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
“合金标准”下测量误差校正模型及其在体育运动数据中的应用
- 批准号:10801133
- 批准年份:2008
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Identifying Metabolic and Psychosocial Antecedents and Characteristics of youth-onset Type 2 diabetes (IMPACT DM)
确定青年发病 2 型糖尿病 (IMPACT DM) 的代谢和心理社会因素和特征
- 批准号:
10584028 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Achieving Sustained Control of Inflammation to Prevent Post-Traumatic Osteoarthritis (PTOA)
实现炎症的持续控制以预防创伤后骨关节炎 (PTOA)
- 批准号:
10641225 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating Enlarged Perivascular Spaces as a Neuroimaging Biomarker of Cerebral Small Vessel Disease
研究扩大的血管周围空间作为脑小血管疾病的神经影像生物标志物
- 批准号:
10674098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Computational simulation of the potential improvement in clinical outcomes of cardiovascular diseases with the use of a personalized predictive medicine approach
使用个性化预测医学方法对心血管疾病临床结果的潜在改善进行计算模拟
- 批准号:
10580116 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Reconstruction and Application of Learning Methods for Symbolic Regression Models
符号回归模型学习方法的重构及应用
- 批准号:
23H03466 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Health Access for Native Hawaiians and Pacific Islanders: Determinants of Health Service Utilization and Insurance Coverage
夏威夷原住民和太平洋岛民的健康获取:健康服务利用和保险覆盖范围的决定因素
- 批准号:
10682335 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Modulation of pressure overload in chronic animal and in vitro models to elucidate associated effects on hemodynamics and left ventricular plasticity
调节慢性动物和体外模型中的压力超负荷,以阐明对血流动力学和左心室可塑性的相关影响
- 批准号:
10905164 - 财政年份:2023
- 资助金额:
-- - 项目类别: