Deep Anomaly Detection on Time Series

时间序列的深度异常检测

基本信息

项目摘要

Time series are ubiquitous, but - in the light of the enormous recent advances enabled by deep learning - anomaly detection (AD) on time series is still in its infancy. In this project, we will develop methods creating modern AD on time series, which is based on deep learning. To this end, we will carry ideas from image AD (such as self-supervised contrastive learning and outlier exposure) over to AD on time series. Such methods rely on a variety of supplemental data (such as the availability of powerful data-augmentation schemes and massive corpora of negative samples) that is notoriously difficult or simply impossible to obtain for time series. As a result, we will study innovative strategies replacing the established supplements. Our approach is based on pragmatically learning the required data augmentations and negative samples. In addition, we will develop methods for AD on time series from the ground up. The proposed model will be based on a random field to model distributions over the gradients of the data. Lastly, we will use contrastive learning to incorporate prior knowledge on chemical processes into our methods, enabling few-shot anomaly detection on chemical process data.
时间序列无处不在,但鉴于深度学习带来的巨大进步,时间序列的异常检测(AD)仍处于起步阶段。在这个项目中,我们将开发基于深度学习的时间序列创建现代AD的方法。为此,我们将把图像AD(例如自监督对比学习和离群值暴露)的想法转移到时间序列上的AD。这种方法依赖于各种补充数据(例如强大的数据增强方案和大量负样本语料库的可用性),而这些数据对于时间序列来说是非常困难或根本不可能获得的。因此,我们将研究创新战略,取代现有的补充剂。我们的方法是基于务实地学习所需的数据扩充和负样本。此外,我们将从头开始开发时间序列上的AD方法。所提出的模型将基于随机场来模拟数据梯度上的分布。 最后,我们将使用对比学习将化学过程的先验知识纳入我们的方法中,从而实现对化学过程数据的少量异常检测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Marius Kloft其他文献

Professor Dr. Marius Kloft的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Marius Kloft', 18)}}的其他基金

Statistical Learning from Dependent Data:Learning Theory, Robust Algorithms, and Applications
从相关数据中进行统计学习:学习理论、鲁棒算法和应用
  • 批准号:
    266702577
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Learning with Dependent Data: With Applications in Computational Genome Analysis
使用相关数据进行学习:在计算基因组分析中的应用
  • 批准号:
    225910935
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
The Data-dependency Gap: A New Problem in the Learning Theory of Convolutional Neural Networks
数据依赖性差距:卷积神经网络学习理论的新问题
  • 批准号:
    464252197
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Coordination Funds
协调基金
  • 批准号:
    498753699
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

Representation Learning for Deep Anomaly Detection
用于深度异常检测的表示学习
  • 批准号:
    23K11222
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Error Detection of Utterances for Non-native Speakers Using Deep Anomaly Detection Technology
使用深度异常检测技术对非母语人士的话语进行错误检测
  • 批准号:
    23K11238
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multicenter study to develop a model for differentiating uterine leiomyoma and sarcomas by deep Learning and anomaly detection
多中心研究通过深度学习和异常检测开发区分子宫肌瘤和肉瘤的模型
  • 批准号:
    23K14866
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Temporal Comparison of Medical Images Based on Deep Anomaly Detection Techniques
基于深度异常检测技术的医学图像时间比较
  • 批准号:
    23K14888
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ATD: Deep Learning on Anomaly Detection for Human Dynamics and Hazard Response
ATD:人体动力学和危险响应异常检测的深度学习
  • 批准号:
    2220211
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on Causality-Inspired Deep Learning Model for Anomaly Detection with Imbalanced Data
用于不平衡数据异常检测的因果启发深度学习模型研究
  • 批准号:
    23K11064
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced deep graph neural networks for explainable anomaly detection study
用于可解释异常检测研究的高级深度图神经网络
  • 批准号:
    22K17961
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable and Deep Anomaly Detection from Big Data with Similarity Hashing
通过相似性哈希从大数据中进行可扩展的深度异常检测
  • 批准号:
    DE210101458
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
Anomaly Detection Method for DNS based on Prediction Using Deep Learning
基于深度学习预测的 DNS 异常检测方法
  • 批准号:
    21K21296
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of an Indoor Anomaly Detection System using Plant Sensors with Deep Learning
使用植物传感器和深度学习开发室内异常检测系统
  • 批准号:
    21K12795
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了