NSF-DFG Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer

NSF-DFG Confine:利用自组织和信息传输塑造用于运输的受限流体

基本信息

项目摘要

We will create “active”, self-organizing fluidic systems that undergo biomimetic energy transduction, converting energy from reactions into mechanical forces, which trigger the spontaneous motion of the confined fluid. To realize this rich dynamic behavior, we will anchor enzymes to 3D-printed patch arrays in fluid-filled microchambers. Appropriate reactants activate the catalytic reactions, which release the chemical energy to “pump” and “sculpt” the fluid flow, modulate fluid-post interactions, drive self-organization, as well as propagate chemical signals throughout the system. We will also introduce upstream signal-processing computational layers to structure enzyme patterns, use patch-selective growth to modulate inter-patch distances, and introduce mobile microcarriers that selectively release chemicals. This will allow us to further orchestrate chemo-mechanical interactions and control the spatiotemporal features of the fluid flow. The spontaneous motion and signaling endow these fluidic platforms with viable mechanisms for achieving life-like functionality in materials systems. In our collaborative work plan, WP1 concentrates on multi-material 3D microprinting of the microfluidic systems, WP2 targets active pumping mechanisms enabled by enzymes on surfaces and deformable posts, and WP3 implements a superimposed self-organizing signal patterning process at the post arrays, arising from DNA strand displacement reaction networks, which can then be coupled to active pumping by enzymes and sculpting of fluid flows. Our approach exploits the rich dynamics within fluid-filled chambers containing catalyst-coated patches, posts, and chemically induced motion and self-organization. Through the combined studies, we will pinpoint the fundamental effects of molecular-scale chemistry on microscale flow of confined fluids, and, conversely, the effect of microscopic flow on chemical kinetics in microchambers. Few individual groups have the expertise and instrumentation to probe the effects of chemo-mechanical transduction in confined fluids in combination with chemically-driven self-organization. This collaboration allows us to: fabricate systems at the desired size scales (Blasco, Heidelberg), chemically tailor the systems to perform systematic studies (Sen, Penn State and Walther, Mainz) and develop predictive models (Balazs, Pittsburgh). Each group requires synergistic interactions with the others to make dramatic advances in active microfluidics, flow chemistry, and theoretical modeling. Looking to the future, the (self-)regulation of fluid flow and transport across length scales in response to specific signals is critical for realizing the next generation smart micro- & nano-scale devices for efficient, and autonomous modes of chemical synthesis, sensing, and delivery. Since flow and feedback are non-equilibrium processes, these studies will also provide new platforms for probing relationships among structure, dynamics, and non-equilibrium behavior.
我们将创造“主动的”、自组织的流体系统,通过仿生能量转导,将反应产生的能量转化为机械力,从而触发受限流体的自发运动。为了实现这种丰富的动态行为,我们将酶锚定在充满流体的微室中3d打印的贴片阵列上。适当的反应物激活催化反应,释放化学能“泵”和“雕刻”流体流动,调节流体-后相互作用,驱动自组织,并在整个系统中传播化学信号。我们还将引入上游信号处理计算层来构建酶模式,使用斑块选择性生长来调节斑块间的距离,并引入选择性释放化学物质的移动微载体。这将使我们能够进一步协调化学-机械相互作用,并控制流体流动的时空特征。自发运动和信号传递赋予这些流体平台在材料系统中实现类生命功能的可行机制。在我们的合作工作计划中,WP1专注于微流体系统的多材料3D微打印,WP2针对酶在表面和可变形柱上激活的主动泵送机制,WP3在柱阵列上实现了一个由DNA链位移反应网络产生的叠加自组织信号模式过程,然后可以通过酶和流体流动的雕刻耦合到主动泵送。我们的方法利用了充满液体的腔室中丰富的动力学,其中包含催化剂涂层的补丁,柱和化学诱导的运动和自组织。通过联合研究,我们将确定分子尺度化学对受限流体微尺度流动的基本影响,反过来,微观流动对微室化学动力学的影响。很少有个人团体有专业知识和仪器来探测化学-机械转导在受限流体中与化学驱动的自组织相结合的影响。这种合作使我们能够:在所需的尺寸尺度上制造系统(Blasco,海德堡),化学定制系统以进行系统研究(Sen,宾夕法尼亚州立大学和Walther,美因茨),并开发预测模型(Balazs,匹兹堡)。每个小组都需要与其他小组进行协同互动,以在主动微流体、流动化学和理论建模方面取得重大进展。展望未来,响应特定信号的流体流动和跨长度尺度运输的(自我)调节对于实现下一代智能微纳米级设备的高效和自主化学合成,传感和输送模式至关重要。由于流动和反馈是非平衡过程,这些研究也将为探索结构、动力学和非平衡行为之间的关系提供新的平台。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Eva Blasco, Ph.D.其他文献

Professorin Dr. Eva Blasco, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Eva Blasco, Ph.D.', 18)}}的其他基金

Towards Programmable 3D Structures at the Microscale
迈向微型可编程 3D 结构
  • 批准号:
    419400349
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Switchable, bistable microactuator systems based on stimuli-responsive polymers
基于刺激响应聚合物的可切换双稳态微执行器系统
  • 批准号:
    424614922
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

基于光纤激光的DFG红外频率梳光源关键问题的研究
  • 批准号:
    61250017
  • 批准年份:
    2012
  • 资助金额:
    20.0 万元
  • 项目类别:
    专项基金项目
基于DFG-out型VEGFR/FGFR双重抑制剂的设计、合成及血管生成抑制活性的研究
  • 批准号:
    21172265
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSF-DFG Confine: Plasma-Catalysis in Confined Spaces for Cold Start NOx Abatement in Automotive Exhaust
NSF-DFG Confine:密闭空间中的等离子体催化用于冷启动汽车尾气中的氮氧化物减排
  • 批准号:
    2234270
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234135
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Reacting precursor/solvent microdroplets in confined 2-D microflows for tailored nanomaterials synthesis
NSF-DFG Confine:在受限的二维微流中反应前体/溶剂微滴,以实现定制的纳米材料合成
  • 批准号:
    2234283
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Spin-Probe-Enabled Sensing of Fluids in Confined Geometries and Interfaces
NSF-DFG Confine:利用自旋探针对受限几何形状和界面中的流体进行传感
  • 批准号:
    2223461
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Drying-induced assembly of colloidal supraparticles from anisotropic nanoparticles
NSF-DFG Confine:干燥诱导各向异性纳米粒子组装胶体超粒子
  • 批准号:
    2223084
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Structure, dynamics, and electrochemical stability of concentrated electrolytes in confined spaces
NSF-DFG Confine:受限空间中浓电解质的结构、动力学和电化学稳定性
  • 批准号:
    2223407
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: MolPEC – Molecular Theory of Weak Polyelectrolytes in Confined Space
NSF-DFG Confine:MolPEC — 密闭空间弱聚电解质的分子理论
  • 批准号:
    2234013
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Diffusion of Water Confined in Patterned Hydrophilic-Hydrophobic Nanopores
NSF-DFG 限制:图案化亲水-疏水纳米孔中限制的水的扩散
  • 批准号:
    2223442
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
NSF-DFG Confine: Aqueous Electrolytes in Nanoporous Media: Structure, Dynamics and Electrochemo-Mechanical Actuation
NSF-DFG Confine:纳米多孔介质中的水电解质:结构、动力学和电化学机械驱动
  • 批准号:
    2234028
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-DFG: Confine: Sculpting Confined Fluids for Transport using Self-Organization and Information Transfer
合作研究:NSF-DFG:限制:利用自组织和信息传输塑造受限流体以进行运输
  • 批准号:
    2234134
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了