INVERSE PROBLEMS OF SCATTERING : MATHEMATICS,NUMERICAL ANALYSIS AND GRAPHICS

散射反问题:数学、数值分析和图形

基本信息

  • 批准号:
    07404004
  • 负责人:
  • 金额:
    $ 12.03万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

Concerning the inverse problems for Schrodinger operatores, H.Isozaki studied deeply and got very important results. Starting from the idea of Faddeev, Isozaki made clear the relationship between the potential of Schrodinger operators and the scattering amplitude. This relationship shown by Isozaki gives a representation of the solution of the inverse problem for the Schrodinger operators. He was invited to several international conferences and was given a high evaluation.Concerning the another core of our research, that is, numerical analysis, we introduced computers of Silicon Graphic Co.Ltd., Chalenge Indigo 2 and Indy. By the leadership of Sakane, with cooperation of graduate students (especially with Senda), we studied algorism for getting Greobner basis. Needless to say, Greobner basis play an essential role in various problems related to polynomial rings. But in order to get Greobner basis explicitely for given concrete problems, it becomes a huge computation and it takes a lot of time. So, it is very important to improve algorithm into a efficient ones.We succeeded to make a new algorism, named GRASIS,which enable us to acheive computation of Greobner basis much faster than before. As an application of our invention of new algorism GRASIS,we found new Einstein metrics.We have to confess that the term of our research has ended before we set about numerical analysis of inverse scattering problems. We shall continue the numerical study of inverse problems.
关于薛定谔算子的逆问题,isozaki进行了深入的研究,得到了非常重要的结果。矶崎从Faddeev的思想出发,明确了薛定谔算符的势与散射振幅的关系。Isozaki所显示的这个关系给出了薛定谔算子逆问题解的一个表示。他被邀请参加了几次国际会议,并得到了很高的评价。对于我们研究的另一个核心,即数值分析,我们引入了Silicon Graphic Co.Ltd.的计算机。, challenge Indigo 2和Indy。在Sakane老师的带领下,在研究生(特别是与Senda)的合作下,我们研究了获得Greobner基的算法。不用说,Greobner基在与多项式环有关的各种问题中起着重要的作用。但是为了明确地得到给定具体问题的格里奥布纳基,它的计算量很大,而且需要花费很多时间。因此,将算法改进为高效算法是非常重要的。我们成功地提出了一种新的算法,称为GRASIS,它使我们能够比以前更快地实现Greobner基的计算。作为我们发明的新算法GRASIS的一个应用,我们发现了新的爱因斯坦度量。我们必须承认,在开始对逆散射问题进行数值分析之前,我们的研究已经结束了。我们将继续反问题的数值研究。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
井川 満: "偏微分方程式入門" 裳華房, 330 (1996)
井川满:《偏微分方程导论》Shokabo,330 (1996)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Matsumura and S.Yanagi: "Uniform boundedness of the solutions for a one-dimensional isentropic medel system of compressible viscous gas" Comm.Math.Physics. vol.175. 259-274 (1996)
A.Matsumura 和 S.Yanagi:“可压缩粘性气体的一维等熵模型系统解的一致有界性”Comm.Math.Physics。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Isozaki: "Inverse scattering theory for Dirac operators" Ann.Inst.H.Poincare. (to appear).
H.Isozaki:“狄拉克算子的逆散射理论”Ann.Inst.H.Poincare。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
C.Gerard, H.Isozaki and E.Skibsted: "N-body resolvent estimates" J.Math.Soc.Japan. vol.48. 135-160 (1996)
C.Gerard、H.Isozaki 和 E.Skibsted:“N 体解析估计”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Fujiki: "Kahler quofients and eguivariant cohomology" Proc.Sympogium on moceuli of vecfor bundles. 39-53 (1996)
A.Fujiki:“Kahler 商和等变上同调”Proc.Sympogium on moceuli of vecfor 束。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IKAWA Mitsuru其他文献

IKAWA Mitsuru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IKAWA Mitsuru', 18)}}的其他基金

On distribution of scattering poles for several convex bodies
几种凸体散射极点的分布
  • 批准号:
    16540189
  • 财政年份:
    2004
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the relationships between the classical mechanics and the chaotic properties of wave motions
经典力学与波动混沌特性关系研究
  • 批准号:
    12440047
  • 财政年份:
    2000
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic research on differential equations
微分方程的综合研究
  • 批准号:
    09304016
  • 财政年份:
    1997
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scattering theory of partial differential equations and its applications
偏微分方程的散射理论及其应用
  • 批准号:
    06302010
  • 财政年份:
    1994
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
Hyperbolic equations and its applications
双曲方程及其应用
  • 批准号:
    02452008
  • 财政年份:
    1990
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
Co-operative research of partial differential equations and its applications
偏微分方程的合作研究及其应用
  • 批准号:
    02302005
  • 财政年份:
    1990
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

Development of inverse problem analysis for internal damage of materials using data assimilation
利用数据同化开发材料内部损伤反问题分析
  • 批准号:
    23K17336
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Inverse problem theory for innovation of detection methods
检测方法创新的反问题理论
  • 批准号:
    23KK0049
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Research on inverse problem analysis of viscoelastic equations
粘弹性方程反问题分析研究
  • 批准号:
    22K03366
  • 财政年份:
    2022
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
3D tracking system for micro magnetization vector realized by inverse problem algorithm
反问题算法实现的微磁化矢量3D跟踪系统
  • 批准号:
    22K04246
  • 财政年份:
    2022
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2111039
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
Development of typhoon ensemble forecasting system based on the source inverse problem of potential vorticity
基于位涡源反问题的台风集合预报系统研制
  • 批准号:
    21H01431
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Lab-Data-Enabled Modeling, Numerical Methods, and Validation for a Three-Dimensional Interface Inverse Problem for Plasma-Material Interactions
协作研究:等离子体-材料相互作用的三维界面反问题的实验室数据建模、数值方法和验证
  • 批准号:
    2110833
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
Damage mechanism analysis of third generation ultra-high strength steels using combining method of synchrotron X-ray and finite element simulation, and its extension to inverse problem analysis
同步辐射X射线与有限元模拟相结合的第三代超高强钢损伤机理分析及其反问题分析的推广
  • 批准号:
    20H02484
  • 财政年份:
    2020
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simultaneous characterization of near-field nanoplasmonic structure and function using super-resolved far-field optics: Solving the Inverse Problem
使用超分辨远场光学同时表征近场纳米等离子体结构和功能:解决反演问题
  • 批准号:
    1808766
  • 财政年份:
    2018
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了