Synthetic research on differential equations
微分方程的综合研究
基本信息
- 批准号:09304016
- 负责人:
- 金额:$ 10.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied differential equations, in the range from ordinary differential equations to partial differential equations and from linear ones to nonlinear ones. We cooperated with the Division of Functional Equations, Mathematical Scociety of Japan.As the result of a study including all the researchers of this field in Japan, we clarified the tendency of the forcecoming subjects. As one of the main results of our synthetic research, Atsushi Yagi published a monograph on evolution equations in Banach spaces. His theory made possible a systematic treatment of nonlinear problems in a form of evolution equations in Banach spaces. One point we want to emphasize is that his theory includes degenerate problems. As to another main subject of research, scattering theory, the Head of Investigaor is writing a monograph which represents the results of synthetic studies of partial differential equations related to scattering theory. Other subject, for instance, hypoellipticity of equations, by the studies in the space of analytic functions or of Gevrey class, the meanings of the conditions posed up to now has been made clear. In ordinary differential equations, by the studies of asymptotic behaviors of hypergeometric functions of congruent type made clear the structure of solutions. As to inverse problems of scattering problems, which are important even in the engineering, a theorem which guarantees the indentification of scatterers from scattering informations of a fixed enegy.We prepared the synthetic discussions on differential equations, but could not reach to results which sythesize the many subject of differential equations.
我们学习了微分方程,从常微分方程到偏微分方程,从线性方程到非线性方程。我们与日本数学会泛函方程部合作。作为一项包括日本该领域所有研究人员的研究结果,我们澄清了被迫成为受试者的趋势。作为我们综合研究的主要成果之一,Atsushi Yagi发表了关于Banach空间演化方程的专著。他的理论使得系统地处理巴拿赫空间中演化方程形式的非线性问题成为可能。我们要强调的一点是,他的理论包括退化问题。关于另一个主要的研究课题——散射理论,研究主任正在写一本专著,它代表了与散射理论有关的偏微分方程的综合研究结果。其他学科,例如方程的半椭圆性,通过对解析函数或格夫里类空间的研究,到目前为止所提出的条件的意义已经清楚了。在常微分方程中,通过对同余型超几何函数的渐近性质的研究,明确了解的结构。对于在工程中也很重要的散射逆问题,给出了从固定能量的散射信息中识别散射体的定理。我们准备了关于微分方程的综合讨论,但未能得出综合微分方程众多学科的结果。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Matsumura and M.Mei: "Asymptotics towerd viscous shock profile for solutions of the viscous-p-systems with bounday effect" Arch.Rational Mech. Anal. (to appear).
A.Matsumura 和 M.Mei:“具有边界效应的粘性 p 系统解的渐近塔状粘性激波曲线”Arch.Rational Mech。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Matsumura and K.Nishihara: "Global asymptotics toward rarefaction wave for solutions of the viscous p-system with boundary effect" Quart.Appl.Math.(to appear).
A.Matsumura 和 K.Nishihara:“具有边界效应的粘性 p 系统解的全局渐近稀疏波”Quart.Appl.Math.(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
井川満: "現代数学の土壌 波動現象" 数学のたのしみ. 6(印刷中). (1998)
井川充:《现代数学的土壤:波动现象》《数学的乐趣》6(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Matsumura and M.Mei: "Asymptotics toward viscous shock profile for solutions of the viscous p-system with boundary effect" Arch.Rational Mech.Anal.(to appear).
A.Matsumura 和 M.Mei:“具有边界效应的粘性 p 系统解的渐近粘性激波剖面”Arch.Rational Mech.Anal.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kenji Yajima: "Smoothness and non-smoothness of lundameutal soluroon of thine dependent Schroedinger eguaroons" Tohoku Math.J.(掲載予定). (1998)
Kenji Yajima:“依赖薛定谔方程的光滑性和非光滑性”Tohoku Math.J(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IKAWA Mitsuru其他文献
IKAWA Mitsuru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IKAWA Mitsuru', 18)}}的其他基金
On distribution of scattering poles for several convex bodies
几种凸体散射极点的分布
- 批准号:
16540189 - 财政年份:2004
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the relationships between the classical mechanics and the chaotic properties of wave motions
经典力学与波动混沌特性关系研究
- 批准号:
12440047 - 财政年份:2000
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scattering theory of partial differential equations and its applications
偏微分方程的散射理论及其应用
- 批准号:
06302010 - 财政年份:1994
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
INVERSE PROBLEMS OF SCATTERING : MATHEMATICS,NUMERICAL ANALYSIS AND GRAPHICS
散射反问题:数学、数值分析和图形
- 批准号:
07404004 - 财政年份:1994
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Co-operative research of partial differential equations and its applications
偏微分方程的合作研究及其应用
- 批准号:
02302005 - 财政年份:1990
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Co-operative Research (A)
Hyperbolic equations and its applications
双曲方程及其应用
- 批准号:
02452008 - 财政年份:1990
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
- 批准号:
2400036 - 财政年份:2024
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
Measure theoretic properties of phase field models for surface evolution equations
测量表面演化方程相场模型的理论特性
- 批准号:
23K03180 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surface evolution equations and geometric analysis of viscosity solutions
表面演化方程和粘度解的几何分析
- 批准号:
23K03175 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Singularities and rigidity in geometric evolution equations
几何演化方程中的奇异性和刚性
- 批准号:
2304684 - 财政年份:2023
- 资助金额:
$ 10.3万 - 项目类别:
Standard Grant
CAREER: Sparse Model Selection for Nonlinear Evolution Equations
职业:非线性演化方程的稀疏模型选择
- 批准号:
2331100 - 财政年份:2022
- 资助金额:
$ 10.3万 - 项目类别:
Continuing Grant
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
571735-2022 - 财政年份:2022
- 资助金额:
$ 10.3万 - 项目类别:
University Undergraduate Student Research Awards
Long time behaviour for nonlinear evolution equations
非线性演化方程的长时间行为
- 批准号:
RGPIN-2018-06487 - 财政年份:2022
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
RGPIN-2019-05940 - 财政年份:2022
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Global dynamics of some evolution equations with temporal and sptatial structure
一些具有时空结构的演化方程的全局动力学
- 批准号:
RGPIN-2016-04665 - 财政年份:2021
- 资助金额:
$ 10.3万 - 项目类别:
Discovery Grants Program - Individual
Existence and blowup of solutions for nonlinear evolution equations and their numerical computations
非线性演化方程解的存在性、爆炸性及其数值计算
- 批准号:
561540-2021 - 财政年份:2021
- 资助金额:
$ 10.3万 - 项目类别:
University Undergraduate Student Research Awards