Hyperbolic equations and its applications

双曲方程及其应用

基本信息

  • 批准号:
    02452008
  • 负责人:
  • 金额:
    $ 2.94万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

We studied the various subjects related to hyperbolic equations, and we get many interesting results related to hyperbolic equations. These results are beyond the frame of the theory of partial differential equations. Especially, concerning to the scattering theory for the wave equation by bounded obstacles, we made clear that the fundamental properties of scattering matrices closely related to the zeta functions of dynamical system in the outside of obstacles. As to this problem, we made studies on the zeta functions of symbolic flows. We developed the method to take out the main properties of the zeta functions. This problem has relations with geometry, algebra and analysis. We made researches co-operatively and got various interesting results.Scattering theory of quantum mechanics, which is a subject very close to hyperbolic problems, ISOZAKI made study on the scattering of many body problem, which had been remained quite open, because the difficulty of the problem. He introduced a new method to know the precise properties of scattering matrices. His results are remarkable and opened new fields of mathematics.On the other hand, the problems of geometrics related to partial differential equations became very interesting. Investigator Kasue made deep studies on the relationships between the spectrum of the Laplacian and the collapse of manifolds. By measuring the behavior of spectrum of the Laplacian he made clear how smooth manifolds collapse to manifolds of different type. This research is a typical example combining the geometry and analysis.
我们研究了与双曲型方程相关的各种问题,得到了许多与双曲型方程相关的有趣结果。这些结果超出了偏微分方程理论的框架。特别地,对于波动方程在有界障碍物上的散射理论,阐明了散射矩阵的基本性质与障碍物外动力系统的zeta函数密切相关。针对这一问题,我们对符号流的zeta函数进行了研究。我们发展了一种方法来提取zeta函数的主要性质。这个问题与几何、代数和分析有关。我们进行了合作研究,并得到了各种有趣的结果。量子力学的散射理论,这是一个非常接近双曲问题的主题,ISOZAKI研究了多体散射问题,这一直是相当开放的,因为这个问题的难度。他介绍了一种新的方法来了解散射矩阵的精确性质。他的成果是显着的,并开辟了新的领域的数学。另一方面,问题的几何有关的偏微分方程变得非常有趣。Kasue研究员对Laplacian的谱和流形的坍缩之间的关系进行了深入的研究。通过测量行为的频谱的拉普拉斯,他清楚地表明如何顺利流形崩溃的流形不同类型。本研究是几何与解析相结合的一个典型实例。

项目成果

期刊论文数量(33)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
井川 満: "On the existence of poles ot the zeta functions for certain symbolicーdynamics" submitted to Osaka J.Math.
Mitsuru Ikawa:“关于某些符号动力学的 zeta 函数极点的存在”提交给 Osaka J.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
加須栄 篤: "Measured Hausdorff convergence of Rieman manifolds and Laplace operators" Osaka J.Math.
Atsushi Kasu:“测量黎曼流形和拉普拉斯算子的豪斯多夫收敛性”Osaka J.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tatsushi Morioka: "Hypoellipticity for semi-elliptic operators which degenerate on hypersurface" Osaka J. Math.28. 563-578 (1991)
Tatsushi Morioka:“在超曲面上退化的半椭圆算子的亚椭圆性”Osaka J. Math.28。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
加須栄 篤: "Measured Hausdorff convergence of Riemannian manifolds and Laplace operators" Osaka J.Math.
Atsushi Kasu:“黎曼流形和拉普拉斯算子的测量豪斯多夫收敛性”Osaka J.Math。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
森岡 達史: "Hypoellipticity for semiーelliptic operators which degenerate on hypersurface" Osaka J.Math.28. 563-578 (1991)
Tatsufumi Morioka:“在超曲面上退化的半椭圆算子的亚椭圆性”Osaka J.Math.28 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IKAWA Mitsuru其他文献

IKAWA Mitsuru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IKAWA Mitsuru', 18)}}的其他基金

On distribution of scattering poles for several convex bodies
几种凸体散射极点的分布
  • 批准号:
    16540189
  • 财政年份:
    2004
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the relationships between the classical mechanics and the chaotic properties of wave motions
经典力学与波动混沌特性关系研究
  • 批准号:
    12440047
  • 财政年份:
    2000
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic research on differential equations
微分方程的综合研究
  • 批准号:
    09304016
  • 财政年份:
    1997
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scattering theory of partial differential equations and its applications
偏微分方程的散射理论及其应用
  • 批准号:
    06302010
  • 财政年份:
    1994
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
INVERSE PROBLEMS OF SCATTERING : MATHEMATICS,NUMERICAL ANALYSIS AND GRAPHICS
散射反问题:数学、数值分析和图形
  • 批准号:
    07404004
  • 财政年份:
    1994
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Co-operative research of partial differential equations and its applications
偏微分方程的合作研究及其应用
  • 批准号:
    02302005
  • 财政年份:
    1990
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)

相似海外基金

High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2345225
  • 财政年份:
    2023
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Standard Grant
High Order Wave Equation Algorithms for the Frequency Domain
频域高阶波动方程算法
  • 批准号:
    2208164
  • 财政年份:
    2022
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Standard Grant
A study on a space-time boundary element method for the wave equation
波动方程时空边界元法研究
  • 批准号:
    20K11849
  • 财政年份:
    2020
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Derivation of the Kinetic Wave Equation
运动波方程的推导
  • 批准号:
    1800840
  • 财政年份:
    2018
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Continuing Grant
Inverse Problems for the Wave Equation
波动方程的反问题
  • 批准号:
    1615616
  • 财政年份:
    2016
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Standard Grant
The analysis of effects by derivative loss in the fundamental solution of the high-dimensional wave equation on nonlinear problems
高维波动方程基本解对非线性问题导数损失的影响分析
  • 批准号:
    15K04964
  • 财政年份:
    2015
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diffusion phenomenon and Wave phenomenon of solutions to the damped wave equation
阻尼波动方程解的扩散现象和波动现象
  • 批准号:
    25400184
  • 财政年份:
    2013
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical Study of Elastic Wave Equation
弹性波方程的数值研究
  • 批准号:
    431035-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.94万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: The Wave Equation on Black Hole Backgrounds
职业:黑洞背景上的波动方程
  • 批准号:
    1054289
  • 财政年份:
    2011
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Continuing Grant
A study of a high accurate numerical method for the inverse problem in the wave equation
波动方程反问题的高精度数值方法研究
  • 批准号:
    23540152
  • 财政年份:
    2011
  • 资助金额:
    $ 2.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了