Co-operative research of partial differential equations and its applications

偏微分方程的合作研究及其应用

基本信息

  • 批准号:
    02302005
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
  • 财政年份:
    1990
  • 资助国家:
    日本
  • 起止时间:
    1990 至 1991
  • 项目状态:
    已结题

项目摘要

The subjects of this research were well achieved by meetings and discussions organized by each investigator and by a big meeting organized co-operatively by the whole investigators.The subjects of this project are mainly concerned with theory of partial differential equations, but, as a matter of course, the theory of ordinary differential equations has deep relationships with studies of Partial differential equations. Therefore, we have organized the meetings in co-operations with researchers of ordinary differential equations. Thus, naturally the results obtained by this project extend over the whole theory of differential equations.In the year of 1990, we organized mainly several middle size meetings, whose subjects were concentrated sharply in topics of central subjects of our project. Namely, we studied around Problems of hyperbolic equations, spectral and scattering theory, and elastic equation and hyperbolic problems appeared in engineering. In these meetings, very ardor discussions were exchanged and we have recognized the deep relations between different subjects. These meeting enable us to consider the various topics in partial differential equations in total. This permits us to treat the theory of partial differential equations as a non-separable subject, that is, in a global perspective of differential equations.In 1991 we organized a big meeting which covers all the fields of differential equations. By these researches we have recognized the variety of the theory of differential equations and generated many germs which will certainly give us many beautiful fruits of mathematics.
通过每位研究者组织的会议和讨论以及由全体研究者合作组织的大型会议,本研究的主题得到了很好的实现。本课题主要研究偏微分方程理论,当然,常微分方程理论与偏微分方程研究也有很深的联系。因此,我们与常微分方程的研究人员合作组织了会议。因此,这个项目得到的结果自然可以推广到整个微分方程理论。在1990年,我们主要组织了几次中等规模的会议,其主题集中在我们项目的中心主题上。即围绕工程中出现的双曲型方程、谱与散射理论、弹性方程和双曲型问题进行研究。在这些会议中,我们进行了非常热烈的讨论,我们认识到不同主题之间的深厚关系。这些会议使我们能够全面考虑偏微分方程中的各种主题。这允许我们把偏微分方程理论作为一个不可分离的学科来对待,也就是说,从微分方程的全局角度来看。1991年,我们组织了一个涵盖微分方程所有领域的大型会议。通过这些研究,我们认识到了微分方程理论的多样性,产生了许多细菌,这些细菌必将给我们带来许多美丽的数学果实。

项目成果

期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
一瀬 孝: "Remarks on the Wyle quantized relativistic Hamiltonian" Note di Mathematica.
Takashi Ichinose:“关于 Wyle 量子化相对论哈密顿量的评论”数学笔记。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
井川 満: "Singular perturbation of symboic flows and poles of the zeta functions" Osaka J.Math.27. 281-300 (1990)
Mitsuru Ikawa:“符号流的奇异扰动和 zeta 函数的极点”Osaka J.Math.27(1990)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
中尾 慎宏: "On solutions of the wave equation with a sublinear dissipative term II" Funk.Ekuac,. 33. 307-316 (1990)
Nobuhiro Nakao:“关于具有次线性耗散项 II 的波动方程的解”Funk.Ekuac, 33. 307-316 (1990)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
井川 満: "On scattering by obstacles" Proceeding of ICMーKyoto. 1145-1154 (1991)
Mitsuru Ikawa:“关于障碍物的散射”ICM-Kyoto 会议记录 1145-1154 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
井川 満: "On scattering by obstacles" Proceeding of ICMーKyoto,. 1145-1154 (1991)
Mitsuru Ikawa:“关于障碍物的散射”ICM-Kyoto 会议记录,1145-1154 (1991)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IKAWA Mitsuru其他文献

IKAWA Mitsuru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IKAWA Mitsuru', 18)}}的其他基金

On distribution of scattering poles for several convex bodies
几种凸体散射极点的分布
  • 批准号:
    16540189
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the relationships between the classical mechanics and the chaotic properties of wave motions
经典力学与波动混沌特性关系研究
  • 批准号:
    12440047
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Synthetic research on differential equations
微分方程的综合研究
  • 批准号:
    09304016
  • 财政年份:
    1997
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Scattering theory of partial differential equations and its applications
偏微分方程的散射理论及其应用
  • 批准号:
    06302010
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Co-operative Research (A)
INVERSE PROBLEMS OF SCATTERING : MATHEMATICS,NUMERICAL ANALYSIS AND GRAPHICS
散射反问题:数学、数值分析和图形
  • 批准号:
    07404004
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Hyperbolic equations and its applications
双曲方程及其应用
  • 批准号:
    02452008
  • 财政年份:
    1990
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Studentship
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    2204322
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Singular integral operators and special functions in scattering theory
散射理论中的奇异积分算子和特殊函数
  • 批准号:
    21K03292
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral and scattering theory with microlocal and semiclassical methods
使用微局域和半经典方法的光谱和散射理论
  • 批准号:
    21K03276
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Scattering theory and continuum limits of discrete Schrodinger operators
离散薛定谔算子的散射理论和连续谱极限
  • 批准号:
    21K20337
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了